Role of Artificial Intelligence in Livestock and Poultry Farming

Authors

  • Hrishitva Patel SUNY Binghamton USA
  • Abdul Samad Faculty of Veterinary and Animal Sciences MNS University of Agriculture,25000 Multan Pakistan
  • Muhammad Hamza Faculty of veterinary and Animal Sciences MNS University of Agriculture 25000, Multan Pakistan
  • Ayesha Muazzam Faculty of veterinary and Animal Sciences MNS University of Agriculture 25000, Multan Pakistan
  • Muhammad Khoiruddin Harahap Politeknk Ganesha Medan, Indonesia

DOI:

10.33395/sinkron.v7i4.11837

Abstract

 One of the technologies, artificial intelligence (AI), requires quick adoption in the livestock sector. The use of AI technology can be highly beneficial in a number of key areas in the livestock business, including monitoring, forecasting, optimizing the growth of farm animals, contend with pests, diseases, threats of biosecurity, and monitoring farm animals and farm management. Livestock farms will be helped by artificial intelligence to gather and analyses of data in order to precisely forecast consumer behavior, including purchasing patterns, top trends, etc. Operation of farm will be done by using automatic means which directly minimize the expense and increase the quality of egg, milk and meat products but this system needs some extra investment to start.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Blanes-Vidal, V., Guijarro, E., Nadimi, E. S., & Torres, A. G. (2010). Development and field test of an on-line computerized instrumentation system for air velocity, temperature and differential pressure measurements in poultry houses. Spanish Journal of Agricultural Research, 8(3), 570-579.

Bloch, V., Barchilon, N., Halachmi, I., & Druyan, S. (2020). Automatic broiler temperature measuring by thermal camera. Biosystems Engineering, 199, 127-134.

Brunberg, E., Jensen, P., Isaksson, A., & Keeling, L. (2011). Feather pecking behavior in laying hens: hypothalamic gene expression in birds performing and receiving pecks. Poultry Science, 90(6), 1145-1152.

Costa, L. S., Pereira, D. F., Bueno, L. G. F., & Pandorfi, H. (2012). Some aspects of chicken behavior and welfare. Brazilian Journal of Poultry Science, 14, 159-164.

Detsch, D. T., Conti, D., Diniz-Ehrhardt, M. A., & Martínez, J. M. (2018). On the controlling of temperature: A proposal for a real-time controller in broiler houses. Scientia Agricola, 75, 445-451.

Dineva, K., Parvanov, D., Atanasova, T., Mateeva, G., Petrov, P., & Kostadinov, G. Towards CPS/IoT System for Livestock Smart Farm Monitoring. In 2021 International Conference Automatics and Informatics (ICAI) (pp. 252-255). IEEE..

Kashiha, M., Pluk, A., Bahr, C., Vranken, E., & Berckmans, D. (2013). Development of an early warning system for a broiler house using computer vision. Biosystems Engineering, 116(1), 36-45.

Nääs, I. D. A., Romanini, C. E. B., Neves, D. P., Nascimento, G. R. D., & Vercellino, R. D. A. (2010). Broiler surface temperature distribution of 42 day old chickens. Scientia Agricola, 67, 497-502.

Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29, 100367.

Oecd/Fao. (2021). OECD-FAO agricultural outlook 2021–2030.

Olejnik, K., Popiela, E., & Opaliński, S. (2022). Emerging Precision Management Methods in Poultry Sector. Agriculture, 12(5), 718.

Paris, B., Vandorou, F., Balafoutis, A. T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., & Papadakis, G. (2022). Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renewable and Sustainable Energy Reviews, 158, 112098.

Sih, A., Bell, A. M., Johnson, J. C., & Ziemba, R. E. (2004). Behavioral syndromes: an integrative overview. The quarterly review of biology, 79(3), 241-277.

Stamp Dawkins, M., Donnelly, C. A., & Jones, T. A. (2004). Chicken welfare is influenced more by housing conditions than by stocking density. Nature, 427(6972), 342-344.

Tablante, N. L., Vaillancourt, J. P., Martin, S. W., Shoukri, M., & Estevez, I. (2000). Spatial distribution of cannibalism mortalities in commercial laying hens. Poultry Science, 79(5), 705-708.

Thomas, D. G., Son, J. H., Ravindran, V., & Thomas, D. V. (2011). The effect of stocking density on the behaviour of broiler chickens. Korean Journal of Poultry Science, 38(1), 1-4.

Van Limbergen, T., Sarrazin, S., Chantziaras, I., Dewulf, J., Ducatelle, R., Kyriazakis, I., ... & Maes, D. (2020). Risk factors for poor health and performance in European broiler production systems. BMC veterinary research, 16(1), 1-13..

Yahav, S. (2009). Alleviating heat stress in domestic fowl: different strategies. World's Poultry Science Journal, 65(4), 719-732.

Zhou, W. T., & Yamamoto, S. (1997). Effects of environmental temperature and heat production due to food intake on abdominal temperature, shank skin temperature and respiration rate of broilers. British poultry science, 38(1), 107-114.

Downloads


Crossmark Updates

How to Cite

Patel , H. ., Samad, A., Muhammad Hamza, Ayesha Muazzam, & Harahap, M. K. . (2022). Role of Artificial Intelligence in Livestock and Poultry Farming. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2425-2429. https://doi.org/10.33395/sinkron.v7i4.11837

Most read articles by the same author(s)