Performance Comparison of Ultrasonic Sensor Accuracy in Measuring Distance

Authors

  • Edward Sze Pradita University
  • Djarot Hindarto Universitas Pradita, Serpong, Banten, Indonesia
  • I Ketut Adi Wirayasa Universitas Pradita, Serpong, Banten, Indonesia
  • Haryono Universitas Pradita, Serpong, Banten, Indonesia

DOI:

10.33395/sinkron.v7i4.11883

Keywords:

Arduino, Parking Sensor, Microcontrollers, Ultrasonic Sensor, Prototype

Abstract

Digital technology is now very sophisticated. Its use is widely applied in all areas of human life. Starting from waking up, human activities and others always use technology. In carrying out their activities, modern humans now almost all use vehicles as a mode of transportation. Today's vehicles use a variety of sensors as a sixth sense. The results of detection using sensors on the vehicle are usually displayed on the dashboard of the vehicle. Modern humans currently use sensors to complete their needs. Besides that, the internet of things technology is growing rapidly in its role and development to support the needs of modern humans. Micro-controller technology is also experiencing rapid and massive development. One of the most common and most popularly used microcontrollers is Arduino. In many streets in Indonesia, people still use vehicles not equipped with many sensors. One of them is a simple parking sensor that many old vehicles don't have. Parking sensor problems are needed at the time of parking so that the vehicle that will be parked does not hit other objects or vehicles. There are many types of ultrasonic sensors. The purpose of this research is to make a prototype ultrasonic sensor that is applied to vehicles and compare some of the most accurate ultrasonic sensors in measuring the distance between the vehicle and the object being measured.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alam, S., & Maulana, G. A. (2020). Rancang Bangun Sistem Pengereman Otomatis Menggunakan Arduino Uno Dan Sensor Ultrasonik. JTT (Jurnal Teknologi Terapan), 6(1), 69. https://doi.org/10.31884/jtt.v6i1.241

Asgari, M., Saboor, F. H., Amouzesh, S. P., Coull, M. W., Khodadadi, A. A., Mortazavi, Y., Hyodo, T., & Shimizu, Y. (2022). Facile ultrasonic-assisted synthesis of SiO2/ZnO core/shell nanostructures: A selective ethanol sensor at low temperatures with enhanced recovery. Sensors and Actuators B: Chemical, 368(June), 132187. https://doi.org/10.1016/j.snb.2022.132187

Budiarso, Z. (2015). Implementasi Sensor Ultrasonik Untuk Mengukur Panjang Gelombang Suara Berbasis Mikrokontroler Sensor merupakan sebuah peralatan yang diperlukan untuk mendukung penerapan teknologi digital besaran-besaran analog menjadi tantangan dengan menggunakan sensor . Jurnal Teknologi Informasi DINAMIK, 20(2), 171–177.

Fiore, L., Mazzaracchio, V., Galloni, P., Sabuzi, F., Pezzola, S., Matteucci, G., Moscone, D., & Arduini, F. (2021). A paper-based electrochemical sensor for H2O2 detection in aerosol phase: Measure of H2O2 nebulized by a reconverted ultrasonic aroma diffuser as a case of study. Microchemical Journal, 166(February), 106249. https://doi.org/10.1016/j.microc.2021.106249

Heru Purwanto, Malik Riyadi, Destiana Windi Widi Astuti, I. W. A. W. K. (2019). Komparasi Sensor Ultrasonik HC-SR04 Dan JSN-SR04T Untuk Apikasi Sistem Deteksi Ketinggian Air. Jurnal SIMETRIS, 10(2), 717–724.

Hindarto, D. (2022). Perbandingan Kinerja Akurasi Klasifikasi K-NN, NB dan DT pada APK Android. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 486–503. https://doi.org/10.35957/jatisi.v9i1.1542

Hindarto, D., & Handri Santoso. (2021). Android APK Identification using Non Neural Network and Neural Network Classifier. Journal of Computer Science and Informatics Engineering (J-Cosine), 5(2), 149–157. https://doi.org/10.29303/jcosine.v5i2.420

Hindarto, D., Indrajit, R. E., & Dazki, E. (2021). Sustainability of Implementing Enterprise Architecture in the Solar Power Generation Manufacturing Industry. Sinkron, 6(1), 13–24. https://jurnal.polgan.ac.id/index.php/sinkron/article/view/11115

Hindarto, D., & Santoso, H. (2022). NON-NEURAL NETWORK AND NEURAL NETWORK Jurnal Nasional Pendidikan Teknik Informatika. 11, 49–62.

Moholkar, K., & Bangare, J. L. (2022). Measurement : Sensors IoT based smart parking model using Arduino UNO with FCFS priority scheduling. Measurement: Sensors, 24(October), 100524. https://doi.org/10.1016/j.measen.2022.100524

Nnabuife, S. G., Kuang, B., Rana, Z. A., & Whidborne, J. (2022). Classification of flow regimes using a neural network and a non-invasive ultrasonic sensor in an S-shaped pipeline-riser system. Chemical Engineering Journal Advances, 9, 100215. https://doi.org/10.1016/j.ceja.2021.100215

Nur R., M., resha A., I., & Dian A., R. (2020). Aplikasi Sensor Ultrasonik HC-SR04 Guna Mendeteksi Jarak Penumpang Kereta Api di Era New Normal. In National Conference PKM Center Sebelas Mare University (Vol. 1, pp. 236–240). https://jurnal.uns.ac.id/pkmcenter/article/view/51362

Perković, T., Šolić, P., Zargariasl, H., Čoko, D., & Rodrigues, J. J. P. C. (2020). Smart Parking Sensors: State of the Art and Performance Evaluation. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121181

Rob, R., Panoiu, C., Rusu-Anghel, S., & Panoiu, M. (2018). A comparison between using distance sensors for measuring the pantograph vertically movement. IOP Conference Series: Materials Science and Engineering, 294(1). https://doi.org/10.1088/1757-899X/294/1/012089

Siswanto, Ikin Rojikin, & Windu Gata. (2019). Pemanfaatan Sensor Suhu DHT-22, Ultrasonik HC-SR04 Untuk Mengendalikan Kolam Dengan Notifikasi Email. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 544–551. https://doi.org/10.29207/resti.v3i3.1334

Suastika, K. G., Nawir, M., & Yunus, P. (2014). Sensor Ultrasonik Sebagai Alat Pengukur Ultrasonic Sensor As a Measurement Device of Air Flow Velocity in the Pipe. Jurnal Pendidikan Fisika Indonesia (Indonesian Journal of Physics Education), 10(1), 163–172. http://journal.unnes.ac.id/nju/index.php/JPFI

Thornton, D. A., Redmill, K., & Coifman, B. (2014). Automated parking surveys from a LIDAR equipped vehicle. Transportation Research Part C: Emerging Technologies, 39(2014), 23–35. https://doi.org/10.1016/j.trc.2013.11.014

Wang, B., Zhu, C. ping, Gong, R. hang, Zhu, J., Huang, B., Xu, F., Ren, Q. gong, Han, Q. bang, & He, Z. bing. (2015). Degradation of acephate using combined ultrasonic and ozonation method. Water Science and Engineering, 8(3), 233–238. https://doi.org/10.1016/j.wse.2015.03.002

Zováthi, Ö., Nagy, B., & Benedek, C. (2022). Point cloud registration and change detection in urban environment using an onboard Lidar sensor and MLS reference data. International Journal of Applied Earth Observation and Geoinformation, 110(October 2021), 102767. https://doi.org/10.1016/j.jag.2022.102767

Downloads


Crossmark Updates

How to Cite

Sze, E., Hindarto, D. ., Wirayasa, I. K. A. ., & Haryono, H. (2022). Performance Comparison of Ultrasonic Sensor Accuracy in Measuring Distance. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2556-2562. https://doi.org/10.33395/sinkron.v7i4.11883

Most read articles by the same author(s)