The Comparison of Accuracy on Classification Climate Change Data with Logistic Regression

Authors

  • Arisman Adnan Department of Statistics Universitas Riau, Indonesia
  • Anne Mudya Yolanda Universitas Riau
  • Gustriza Erda Department of Statistics Universitas Riau, Indonesia
  • Noor Ell Goldameir Department of Statistics Universitas Riau, Indonesia
  • Zul Indra Department of Information System Universitas Riau, Indonesia

DOI:

10.33395/sinkron.v8i1.11914

Keywords:

Classification, climate change, logistic regression, machine learning, transformation data

Abstract

Machine learning methods can be used to generate climate change models. The goal of this study is to use logistic regression machine learning algorithms to classify data on greenhouse gas emissions. The data used is climate change data of several countries obtained from The World Bank, with total greenhouse gas emissions as the response variable and 61 other attributes as explanatory variables. This data is preprocessed using min-max normalization to handle unbalanced ranges, and then the data is split into 70% training data and 30% testing data. Based on the logistic regression modeling, it was discovered that the data from the min-max transformation resulted in better modeling than the data modeling without the transformation process. The accuracy, precision, sensitivity, and specificity of the transformation are 87.60%, 87.76%, 87.04%, and 88.14%, respectively

GS Cited Analysis

Downloads

Download data is not yet available.

References

Adnan, A., Yolanda, A. M., & Natasya, F. (2021). A comparison of bagging and boosting on classification data: Case study on rainfall data in Sultan Syarif Kasim II Meteorological Station in Pekanbaru. Journal of Physics: Conference Series, 2049(1), 012053. https://doi.org/10.1088/1742-6596/2049/1/012053

AI Publishing. (2020). Regression Models with Python for Beginners (First). AI Publishing LLC.

Anaraki, M. V., Farzin, S., Mousavi, S.-F., & Karami, H. (2021). Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods. Water Resources Management, 35, 199–223.

Burkov, A. (2019). The Hundred Pages Machine Learning Book. In Expert Systems. Andriy Burkov. https://doi.org/10.1111/j.1468-0394.1988.tb00341.x

Connely, L. (2020). Logistic Regression. Medsurg Nursing, 29(5).

Davenport, F., & Diffenbaugh, N. (2021). Using Machine Learning to Analyze Physical Causes of Climate Change: A Case Study of U.S. Midwest Extreme Precipitation. Geophysical Research Letters, 48(15). https://doi.org/http://dx.doi.org/10.1029/2021GL093787

Goldameir, N. E., Yolanda, A. M., Adnan, A., & Febrianti, L. (2021). Classification of the Human Development Index in Indonesia Using the Bootstrap Aggregating Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 6(1), 100–106. https://doi.org/10.33395/sinkron.v6i1.11173 e-ISSN

Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019). Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett., 14(124007). https://doi.org/doi.org/10.1088/1748-9326/ab4e55

Milojevic-Dupont, N., & Creutzig, F. (2021). Machine learning for geographically differentiated climate change mitigation in urban areas. Sustainable Cities and Society, 64(102526). https://doi.org/doi.org/10.1016/j.scs.2020.102526

Nayebi, H. (2020). Advanced statistics for testing assumed casual relationships. Springer. http://www.springer.com/series/14538%0Ahttp://dx.doi.org/10.1007/978-3-030-54754-7

Richert, W., & Coelho, L. P. (2013). Building Machine Learning Systems with Python. PACKT Publishing.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C., Ng, A. Y., Hassabis, D., Platt, J. C., … Bengio, Y. (2019). Tackling Climate Change with Machine Learning. https://doi.org/10.48550/arxiv.1906.05433

The Intergovernmental Panel on Climate Change Working Group I Sixth Assessment Report/AR6 Group 1 IPCC. (2021). Climate Change 2021 The Physical Science Basis: Summary for Policymakers. The Intergovernmental Panel on Climate Change.

The World Bank. (2022). Climate Change. https://data.worldbank.org/topic/19

Top, G., Anomaly, C., & Anomaly, F. (n.d.). Global Climate Report-Annual 2010.

Yolanda, A. M., Adnan, A., Goldameir, N. E., & Rizalde, F. A. (2021). The Comparison of Accuracy on Classification Data with Machine Learning Algorithms (Case Study: Human Development Index by Regency/City in Indonesia 2020). International Conference on Advanced Technology and Multidiscipline (ICATAM) 2021.

Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., & Marcomini, A. (2021). Exploring machine learning potential for climate change risk assessment. Earth-Science Reviews, 20(103752). https://doi.org/doi.org/10.1016/j.earscirev.2021.103752

Downloads


Crossmark Updates

How to Cite

Adnan, A. ., Yolanda, A. M., Erda, G. ., Goldameir, N. E. ., & Indra, Z. . (2023). The Comparison of Accuracy on Classification Climate Change Data with Logistic Regression. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 56-61. https://doi.org/10.33395/sinkron.v8i1.11914