Utilizing Website-Based Speech-to-Text for Query Search

Authors

  • Rizki Ramadhan Esa Unggul University, Jakarta, Indonesia
  • Masmur Tarigan Esa Unggul University, Jakarta, Indonesia
  • Nizirwan Anwar Esa Unggul University https://orcid.org/0000-0003-1189-9093
  • Kundang Karsono Juman Esa Unggul University, Jakarta, Indonesia
  • Mukhamad Abduh Esa Unggul University, Jakarta, Indonesia

DOI:

10.33395/sinkron.v8i1.11960

Keywords:

The search query, Speech-to-Text, Prototype, UML, Flask Framework, Heroku

Abstract

Companies are increasingly using database-based data processing systems to store all information about their goods and products, so searching for queries on the system is one of the routine activities carried out by employees daily. The user must enter the keywords from the desired query in the search feature available on the system using the keyboard to perform the search process. It can only be accessed via a computer connected to the internet. Office However, sometimes there are several factors that make it difficult for employees to type in keywords, such as driving or having physical limitations, especially in the hands. This study aims to present an alternative to entering keywords not only through the keyboard but also by using voice by creating a query search system with the Speech-to-Text method so that users simply say the keywords from the desired data, and the system will be built based on a website so that they can be accessed from other devices such as smartphones, tablets, laptops or other devices. The method used in making this system is the System Development Life Cycle (SDCL) Prototype model and the system design modeling using the Unified Modeling Language (UML). This system will also be hosted on the Heroku platform, and in order to guarantee optimal operation of the system, a black box testing method is used, and the word accuracy test resulting from the Speech-to-Text conversion as well as the processing time required from the start of the system running to displaying the search results. It is hoped that with this system, employees will find it easier to enter keywords from the data they want through various devices quickly and with precise results.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abass, O. A., & Arowolo, O. A. (2017). Information Retrieval Models, Techniques and Applications. International Research Journal of Advanced Engineering and Science, 2(2), 197–202.

Akbar, A., Husodo, A. Y., & Zubaidi, A. (2019). Implementasi Google Speech API Pada Aplikasi Koreksi Hafalan Al-Quran Berbasis Android. Jurnal Teknologi Informasi, Komputer, Dan Aplikasinya (JTIKA), 1(1), 1–8.

Bharathi, B., Kavitha, S., Shashaank, D. S., Priyanka, S., & Sriram, V. (2017). Speech recognition based chess system for visually challanged. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 1797–1801. https://doi.org/10.1109/ICECDS.2017.8389758

De Rosa, A. (2014). Introducing the Web Speech API. SidePoint. https://www.sitepoint.com/introducing-web-speech-api/

Goldberg, Kevin (2016). An Introduction to Python WSGI Servers for Performance | AppDynamics. Application Performance Monitoring Blog | AppDynamics. Retrieved 2020-08-20.

Gyorodi, C., R. Gyorodi, G. Pecherle, dan G. M. Cornea, (2010), Full-Text Search Engine using MySQL, International Journal of Computers, Communications & Control, No.5, Vol.5, hal. 735-743.

Jollyta, D., Oktarina, D., & Johan, J. (2020). Tinjauan Kasus Model Speech Recognition: Hidden Markov Model. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(2), 202–209. https://doi.org/10.26418/jp.v6i2.39231

Laxmi, C. Bhagya, Bhaludra Raveendranadh Singh dan Moligi Sangeetha, (2014), Supporting Search-As-You-Type Using SQL in Databases, International Journal of Computer Trends and Technology. No.5, Vol.16, hal 185-188

Kemp, C., & Gyger, B. (2013). Professional Heroku Programming. Professional Heroku Programming, 489.

Miguel Grinberg. (2013). Flask web development. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).

Nada, Q., Ridhuandi, C., Santoso, P., & Apriyanto, D. (2019). Speech Recognition dengan Hidden Markov Model untuk Pengenalan dan Pelafalan Huruf Hijaiyah. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 5(1), 19. https://doi.org/10.36722/sst.v5i1.319

Parwata, I. G. H., Gede, I. K., Putra, D., & Sutramiani, N. P. (2019). Penerapan Web Speech API pada Game Catur Berbasis Suara. MERPATI, 7(1), 21–28.

Pratama, M. L. P. Y. S. H. Z. (2018). Analisa Perbandingan Query Pencarian Menggunakan Fungsi Match-Against Pada Mysql Dengan Tabel Kamus. CCIT Journal, Vol 11 No 1 (2018): CCIT JOURNAL, 15–25. https://ejournal.raharja.ac.id/index.php/ccit/article/view/555/489

R. S. Pressman. (2010). Software Engineering. In Mc-Graw Hill, Inc. (Vol. 6, Issue 3). Mc-Graw Hill, Inc. https://doi.org/10.23887/jjpg.v6i3.20701

Sandi, A. (2017). Mengenal Apa itu Web API. CodePolitan. https://codepolitan.com/blog/mengenal-apa-itu-web-api-5a0c2855799c8

Setiawan, D. (2007). MySQL Full-Text Searching. IlmuKomputer, 1–8. https://ilmukomputer.org/wp-content/uploads/2013/09/di2k-MySQL-Full-text-Searching.pdf

Syafitri, I. (2019). Pengertian Query Beserta Fungsi dan Contoh Query pada Database. Nesabamedia.Com. https://www.nesabamedia.com/pengertian-query/

Tonny James, N., & Kannan, R. (2017). A Survey on Information Retrieval Models, Techniques and Applications. International Journal of Advanced Research in Computer Science and Software Engineering, 7, 16. https://doi.org/10.23956/ijarcsse.v7i7.90

Downloads


Crossmark Updates

How to Cite

Ramadhan, R. ., Tarigan, M. ., Anwar, N., Juman, K. K. ., & Abduh, M. . (2023). Utilizing Website-Based Speech-to-Text for Query Search . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 90-100. https://doi.org/10.33395/sinkron.v8i1.11960

Most read articles by the same author(s)