Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction

Authors

DOI:

10.33395/sinkron.v8i1.11967

Keywords:

Fertility; Classification; Naïve Bayes; Attribute Reduction; Forward Selection

Abstract

The problem of infertility between husband and wife is an important issue that destroys family harmony, and many people still consider infertility or infertility a female problem. However, about 7% of men of childbearing age suffer from infertility. The biggest factor causing male infertility is sperm quality problems. Sperm analysis can be the best predictor of male fertility potential. Machine learning and data mining techniques can be used to automate disease diagnosis. This study aims to obtain a regular form classification model from sperm sample data of 100 volunteers. This classification model can be used to predict male fertility levels into 2 classes, namely normal and alter (decreased fertility). This study uses a fertility dataset obtained from the UCI Machine Learning Repository. Before the data mining process, data preprocessing is required. The classification process is carried out using Naive Bayes and attribute reduction techniques using forward selection to see the increase in the accuracy of Naive Bayes performance. The Naive Bayes test without attribute reduction has an accuracy of 85%, while attribute reduction with forward selection has an accuracy of 88% in predicting sperm fertility. Therefore, by using forward selection with Naive Bayes to reduce attributes in this study, this study was able to increase accuracy by 3% and can be used to help predict sperm fertility

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Ahmadi Irmansyah Lubis, Politeknik Negeri Batam

D4 Teknologi Rekayasa Perangkat Lunak, Teknik Informatika, Politeknik Negeri Batam

ID SINTA : 6765096

ID Google Scholar : GxmrjkIAAAAJ

ID SCOPUS : 57219162542

Rudy Chandra, Institut Teknologi Del, Sumatera Utara, Indonesia

Program Studi D3 Teknologi Informasi, Institut Teknologi Del, Sumatera Utara, Indonesia

ID SINTA : 6789867

ID Google Scholar : uJx6rfsAAAAJ

 

References

Arifin, T. (2020). Optimasi Decision Tree menggunakan Particle Swarm Optimization untuk klasifikasi sel Pap Smear. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(3), 572–579. https://doi.org/10.35957/jatisi.v7i3.361

Budianita, E., Hustianto, F. R., Syafria, F., & Nasir, M. (2018). Implementasi Algoritma Jaringan Syaraf Tiruan ( JST ) Hopfield untuk Klasifikasi Kualitas Kesuburan Pria. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI-10), November, 137–142.

Erdiansyah, U., Lubis, A. I., & Syahputra, G. (2022). Klasifikasi Penyakit Diabetic Retinopathy Menggunakan Multilayer Perceptron. 1–6.

Harafani, H., & Maulana, A. (2019). Penerapan Algoritma Genetika pada Support Vector Machine Sebagai Pengoptimasi Parameter untuk Memprediksi Kesuburan. Jurnal Teknik Informatika STMIK Antar Bangsa, V(1), 51–59.

Hermawanti, L., & Safriandono, A. N. (2016). PENGGABUNGAN ALGORITMA FORWARD SELECTION DAN K-NEAREST NEIGHBOR UNTUK MENDIAGNOSIS PENYAKIT DIABETES DI KOTA SEMARANG/Combining of Forward Selection Algorithm and K-Nearest Neighbor To Diagnose Diabetes Disease in Semarang City. Momentum, 12(2), 28–31.

Irmansyah Lubis, A., Setiawan, F., & Lusiyanti, L. (2021). Penentuan Peringkat Konsentrasi Tingkat Kesuburan Sperma Menggunakan Metode MOORA. Digital Transformation Technology, 1(2), 62–68. https://doi.org/10.47709/digitech.v1i2.1116

Khaira, U., Syarief, N., & Hayati, I. (2020). Prediksi Tingkat Fertilitas Pria Dengan Algoritma Pohon Keputusan Cart. Program Studi Sistem Informasi, Fakultas Sains Dan Teknologi, Universitas Jambi, 5(1), 35–42.

Laksono, P. J. T. (2008). Penerapan Forward Selection Pada Support Vector Machine Untuk Klasifikasi Kanker Payudara. Ilmukomputer.Com, 1–27.

Lubis, A. I., Erdiansyah, U., & Siregar, R. (2022). Komparasi Akurasi pada Naive Bayes dan Random Forest dalam Klasifikasi Penyakit Liver. Journal of Computing Engineering, System and Science (CESS), 7(1), 81–89.

Lubis, A. I., & Setiawan, F. (2022). Komparasi Kinerja ELECTRE dan MOORA dalam Menentukan Konsentrasi Tingkat Kesuburan Sperma. 13(01), 99–105. https://doi.org/10.35970/infotekmesin.v13i1.1012

Lubis, A. I., Sihombing, P., & Nababan, E. B. (2020). Comparison SAW and MOORA Methods with Attribute Weighting Using Rank Order Centroid in Decision Making. MECnIT 2020 - International Conference on Mechanical, Electronics, Computer, and Industrial Technology, February 2022, 127–131. https://doi.org/10.1109/MECnIT48290.2020.9166640

Ma’mur, K. (2019). Analisis Penerapan Algoritma ID3 dalam Mendiagnosis Kesuburan Pria. Jurnal Informatika Universitas Pamulang, 4(2), 35. https://doi.org/10.32493/informatika.v4i2.2274

Noviati, N., Fauziati, S., & Hidayah, I. (2015). Analisis Pengaruh Seleksi Fitur pada Klasifikasi Konsentrasi … (Noviati dkk.). Snst, 160–165.

Nurelasari, E. (2018). Komparasi Algoritma Naive Bayes Dengan Support Vector Machine Berbasis Particle Swarm Optimization untuk Prediksi Kesuburan. Bina Insani ICT Journal, 5(1), 61–70.

Susanto, B. M. (2013). Komparasi Algoritma Naive Bayes Dan C4. 5 Dalam Mendeteksi Kesuburan. Snit 2013, 69–73. http://seminar.bsi.ac.id/snit/index.php/snit-2013/article/view/268%0Ahttps://seminar.bsi.ac.id/snit/index.php/snit-2013/article/view/268/264

Ubaedi, I., & Djaksana, Y. M. (2022). Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit. JSiI (Jurnal Sistem Informasi), 9(1), 17–26. https://doi.org/10.30656/jsii.v9i1.3505

Utomo, D. P., Sirait, P., & Yunis, R. (2020). Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5.0. Jurnal Media Informatika Budidarma, 4(4), 994–1006. https://doi.org/10.30865/mib.v4i4.2355

Yepriyanto, R., Kustanto, & Utami, Y. R. W. (2014). Sistem Diagnosa Kesuburan Sperma Dengan Metode K-Nearest Neighbor (K-Nn). Jurnal Ilmiah SINUS, 33–44.

Downloads


Crossmark Updates

How to Cite

Lubis, A. I. ., & Chandra, R. (2023). Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 275-285. https://doi.org/10.33395/sinkron.v8i1.11967