Sentiment Analysis of Twitter User Opinions Related to Metaverse Technology Using Lexicon Based Method

Authors

  • Wahyu Azriel Akbari Universitas Buana Perjuangan Karawang
  • Tukino Universitas Buana Perjuangan Karawang
  • Baenil Huda Universitas Buana Perjuangan Karawang
  • Muhamad Muslih Universitas Nusa Putra, Indonesia

DOI:

10.33395/sinkron.v8i1.11992

Keywords:

Lexicon Based; Metaverse Technology; Sentiment Analysis; Twitter; Python.

Abstract

The technology of the metaverse has been a topic of discussion in the tech sector recently, and the implementation of the metaverse in the future is one of the most anticipated things for internet users around the world, allowing users to become the avatar they want in the virtual universe. To see how someone approaches metaverse technology, we can analyze it by looking at various opinions that emerge from the sentiment of internet users, one of which is from the social media Twitter. This study aims to analyze the sentiment of Twitter users' opinions, which is one of the most popular internet social media platforms. The researcher collects tweet data using the snscrape library in the Python programming language, a tool for mass data collection from Twitter. Then, the analysis of the sentiment of Twitter user opinions is carried out using the Lexicon Based method, which is a method that uses a dictionary of words to categorize the sentiment of a text. The results of this study show that the Lexicon Based method can classify the sentiment of Twitter user opinions related to metaverse technology with an accuracy value of 84%. This shows that the results of sentiment analysis using the Lexicon Based method have a good level of accuracy in performance in analyzing the sentiment of Twitter user opinions related to metaverse technology.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agastya, I. M. A. (2018). Pengaruh Stemmer Bahasa Indonesia Terhadap Peforma Analisis Sentimen Terjemahan Ulasan Film. Jurnal Tekno Kompak, 12(1), 18. doi:10.33365/jtk.v12i1.70

Ahmad, A., & Gata, W. (2022). Sentimen Analisis Masyarakat Indonesia di Twitter Terkait Metaverse dengan Algoritma Support Vector Machine. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(4), 548–555. doi:10.35870/jtik.v6i4.569

Buhalis, D., & Karatay, N. (2022). Mixed Reality (MR) for Generation Z in Cultural Heritage Tourism Towards Metaverse. Information and Communication Technologies in Tourism 2022, 16–27. doi:10.1007/978-3-030-94751-4_2

Comer, D. E. (2018). The Internet Book Everything You Need to Know about Computer Networking and How the Internet Works. The Internet Book. doi:10.1201/9780429447358

Dewi Kumalasari, R. A., Pradana, M., & Miftahuddin, A. (2022). Diskusi Metaverse di Twitter (#Metaverse): Analisis Jejaring Sosial. Ideas: Jurnal Pendidikan, Sosial, Dan Budaya, 8(3), 841. doi:10.32884/ideas.v8i3.835

Galih Pradana, M. (2020). Penggunaan Fitur Wordcloud Dan Document Term Matrix Dalam Text Mining. Jurnal Ilmiah Informatika (JIF), 8(1), 38–43.

Kraus, S., Kanbach, D. K., Krysta, P. M., Steinhoff, M. M., & Tomini, N. (2022). Facebook and the creation of the metaverse: radical business model innovation or incremental transformation? International Journal of Entrepreneurial Behaviour and Research, 28(9), 52–77. doi:10.1108/IJEBR-12-2021-0984

Lee, L.-H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., … Hui, P. (2021). All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda, 14(8), 1–66. Retrieved from http://arxiv.org/abs/2110.05352

Magriza, I. A. (2022). Analisis Penerapan Algoritma Pada Preprocessing Data, 2(5), 1–9.

Mann, S., Furness, T., Yuan, Y., Iorio, J., & Wang, Z. (2018). Virtual reality in Metaverse for future mental health-helping profession: an alternative solution to the mental health challenges of the COVID-19 pandemic, 1–2. Retrieved from http://arxiv.org/abs/1804.08386

Matulatuwa, F. M., Sediyono, E., & Iriani, A. (2017). Text mining dengan metode lexicon based untuk sentiment analysis pelayanan PT. Pos Indonesia melalui media sosial Twitter. Jurnal Masyarakat Informatika Indonesia, 2(3), 52–65.

Muhamad, A. N. (2019). Analisis Sentimen Positif Dan Negatif Komentar Video Youtube Menggunakan Metode Naïve Bayes - Support Vector Machine (Nbsvm) Classifier. Skripsi, 17.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 5(2), 697–711.

Sumitro, P. A., Rasiban, Mulyana, D. I., & Saputro, W. (2021). Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based. J-ICOM - Jurnal Informatika Dan Teknologi Komputer, 2(2), 50–56. doi:10.33059/j-icom.v2i2.4009

Wakamiya, S., Morita, M., Kano, Y., Ohkuma, T., & Aramaki, E. (2019). Tweet classification toward twitter-based disease surveillance: New data, methods, and evaluations. Journal of Medical Internet Research, 21(2). doi:10.2196/12783

Downloads


Crossmark Updates

How to Cite

Akbari, W. A. ., Tukino, T., Huda, B. ., & Muslih, M. . (2023). Sentiment Analysis of Twitter User Opinions Related to Metaverse Technology Using Lexicon Based Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 195-201. https://doi.org/10.33395/sinkron.v8i1.11992