Weather Forecast In Medan City With Hopfield Artificial Neural Network Algorithm

Authors

  • Badrul Anwar Pendidikan Teknologi Kejuruan, Fakultas Teknik, Universitas Negeri Padang, Padang, Indonesia
  • Nizwardi Jalinus Pendidikan Teknologi Kejuruan, Fakultas Teknik, Universitas Negeri Padang, Padang, Indonesia
  • Rijal Abdullah Pendidikan Teknologi Kejuruan, Fakultas Teknik, Universitas Negeri Padang, Padang, Indonesia

DOI:

10.33395/sinkron.v8i1.12048

Keywords:

Artificial Neural Network; Hopfield; BMKG; Aplication; Medan

Abstract

Many aspects are very influential for the continuity of Indonesian society, especially Medan. One of the aspects that affect the continuity of the people of Medan is the weather. Weather plays an important role in various sectors, such as agriculture, aviation, and many other sectors. The Meteorology, Climatology and Geophysics Agency (BMKG) is always trying to develop their innovations to be able to provide accurate weather information to the public. To assist the process of disseminating weather information to the public in Medan City, we need a Weather Forecast application that uses Website-based computer technology so that it can help disseminate weather information easily and effectively which is generated through the support of the Hopfield method by connecting the application with BMKG data. Based on the results of this study, a weather forecasting application was successfully built to help disseminate weather information in Medan City to all Medan City people who want to get information about the weather.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Casro, C., Purwati, Y., Setyaningsih, G., & Kuncoro, A. P. (2020). Rancang Bangun Aplikasi Pengaduan Pelanggan Berbasis Web Menggunakan Framework Codeigniter Di Indotechno Purwokerto. Jurnal Sains Dan Informatika, 6(2), 166–174. https://doi.org/10.34128/jsi.v6i2.244

Chan, H., & Luo, M. (2020). Research on the training mode of applied undergraduate cross-border e-commerce talents based on new engineering course background. Proceedings - 2020 International Conference on Big Data and Informatization Education, ICBDIE 2020. https://doi.org/10.1109/ICBDIE50010.2020.00093

Chunqiao, M., Qingyou, D., Xiaoning, P., & Jing, L. (2018). Predicting Student Study Failure Risk Using Artificial Neural Network Method. Recent Patents on Engineering, 13(4). https://doi.org/10.2174/1872212112666180917115140

De Rosnay, P., Rodríguez-Fernández, N., Muñoz-Sabate, J., Albergel, C., Fairbairn, D., Lawrence, H., English, S., Drusch, M., & Kerr, Y. (2018). SMOS data assimilation for numerical weather prediction. International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July. https://doi.org/10.1109/IGARSS.2018.8519369

de Rosnay, P., Weston, P., Rodríguez-Fernández, N., Baugh, C., Fairbairn, D., Di Giuseppe, F., Muñoz-Sabater, J., English, S., Prudhomme, C., & Drusch, M. (2021). L-BAND DATA FOR NUMERICAL WEATHER PREDICTION AND EMERGENCY SERVICES AT ECMWF. International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/IGARSS47720.2021.9554390

Dzikri, A., & Kurniawan, D. E. (2018). Hand Gesture Recognition for Game 3D Object Using The Leap Motion Controller with Backpropagation Method. Proceedings of the 2018 International Conference on Applied Engineering, ICAE 2018. https://doi.org/10.1109/INCAE.2018.8579400

Ertuǧrul, Ö. F., Tekin, R., & Kaya, Y. (2017). Randomized feed-forward artificial neural networks in estimating short-term power load of a small house: A case study. IDAP 2017 - International Artificial Intelligence and Data Processing Symposium. https://doi.org/10.1109/IDAP.2017.8090344

Georgopoulos, V. C., Rajappa, A. T., Soriano, K., Zeimer, C., & Malandraki, G. (2019). Feasibility of a neural network in predicting aspiration severity post supratentorial stroke. Dysphagia, 34(6).

Hamdani, M., Taki, M., Rahnama, M., Rohani, A., & Rahmati-Joneidabad, M. (2020). Prediction the inside variables of even-span glass greenhouse with special structure by artificial neural network (MLP-RBF) models. Journal of Agricultural Machinery, 10(2).

He, W., Ding, S., Zhang, J., Pei, C., Zhang, Z., Wang, Y., & Li, H. (2021). Performance optimization of server water cooling system based on minimum energy consumption analysis. Applied Energy, 303. https://doi.org/10.1016/j.apenergy.2021.117620

Khairiyati, E. D., Nasution, M. I. P., & Ikhwan, A. (2020). Pemetaan Akurat Lokasi Kerja Nyata Dengan Data Monografi Desa. JurTI (Jurnal Teknologi Informasi), 4(1), 7–12. http://jurnal.una.ac.id/index.php/jurti/article/view/1299

Prashant Mahasagara, S., Alamsyah, A., & Rikumahu, B. (2017). Indonesia infrastructure and consumer stock portfolio prediction using artificial neural network backpropagation. 2017 5th International Conference on Information and Communication Technology, ICoIC7 2017. https://doi.org/10.1109/ICoICT.2017.8074710

Susanty, M., Sahrul, Rahman, A. F., Normansyah, M. D., & Irawan, A. (2019). Offensive language detection using artificial neural network. Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019. https://doi.org/10.1109/ICAIIT.2019.8834452

Zhong, Z., Carr, T. R., Wu, X., & Wang, G. (2019). Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics, 84(6). https://doi.org/10.1190/geo2018-0588.1

Downloads


Crossmark Updates

How to Cite

Anwar, B. ., Jalinus, N. ., & Abdullah, R. (2023). Weather Forecast In Medan City With Hopfield Artificial Neural Network Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 398-404. https://doi.org/10.33395/sinkron.v8i1.12048