Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines

Authors

  • M Amiruddin Saddam Faculty of Information Technology Budiluhur University, Indonesia
  • Erno Kurniawan Dewantara Faculty of Information Technology Budiluhur University, Indonesia
  • Achmad Solichin Faculty of Information Technology Budiluhur University, Indonesia

DOI:

10.33395/sinkron.v8i1.12063

Keywords:

Classification, Flood, Sentiment Analysis, SVM, Text Mining, Twitter

Abstract

Floods can cause negative impacts in various aspects, starting from economic, social, to health aspects. Even quoted from the site gis.bnpb.go.id, during 2022, there have been 1031 cases of flood disasters in Indonesia. Meanwhile in Jakarta, in 2022 there have been 14 cases of floods that caused hundreds of people to lose their homes. Several approaches can be taken to determine public opinion about flooding, one of which is text mining with an analysis of community sentiment. Sentiment analysis aims to determine public opinion regarding flood management in the capital city of Jakarta based on positive, neutral, and negative categories. To get the public sentiment, researchers carried out several stages, including the preprocessing stage. After obtaining public sentiment regarding flood management through the preprocessing stage, then classification is carried out based on public opinion so that it can be used by related parties for evaluation material in flood handling. In this study, the classification method used is the SVM method which is one of the supervised learning methods in machine learning. After classification, the next stage is the testing process using the K-Fold Cross Validation method. From the various sentiments obtained from Twitter data, it can be concluded that there are around 414 positive sentiments and 2464 negative sentiments related to flood handling in DKI Jakarta, while the results obtained from the test results show that the accuracy reaches 88.6%, the precision reaches 88.6% and recall reached 89.4%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alabid, N. N., & Katheeth, Z. D. (2021). Sentiment analysis of twitter posts related to the covid-19 vaccines. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1727–1734. Retrieved from https://doi.org/10.11591/ijeecs.v24.i3.pp1727-1734

Alhakiem, H. R., & Setiawan, E. B. (2022). Aspect-Based Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 840–846. Retrieved from https://doi.org/10.29207/resti.v6i5.4429

Alita, D., Priyanta, S., & Rokhman, N. (2019). Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter. Journal of Information Systems Engineering and Business Intelligence, 5(2), 100. Retrieved from https://doi.org/10.20473/jisebi.5.2.100-109

Atsqalani, H., Hayatin, N., & Aditya, C. S. K. (2022). Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine and Query Expansion Ranking. Jurnal Online Informatika, 7(1), 116. Retrieved from https://doi.org/10.15575/join.v7i1.669

Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1). Retrieved from https://doi.org/10.23960/jitet.v10i1.2262

Eldha Oktaviana, N., & Arum Sari, Y. (2022). Analisis Sentimen Terhadap Kebijakan Kuliah Daring Selama Pandemi Menggunakan Pendekatan Lexicon Based Features Dan Support Vector Machine. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 9(2), 357–362. Retrieved from https://doi.org/10.25126/jtiik.202295625

Fatihah Rahmadayana, & Yuliant Sibaroni. (2021). Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(5), 936–942. Retrieved from https://doi.org/10.29207/resti.v5i5.3457

Fridom Mailo, F., & Lazuardi, L. (2019). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia. Jurnal Sistem Informasi Kesehatan Masyarakat Journal of Information Systems for Public Health, 4(1).

Gata, W., & Bayhaqy, A. (2020). Analysis sentiment about islamophobia when Christchurch attack on social media. Telkomnika (Telecommunication Computing Electronics and Control), 18(4), 1819–1827. Retrieved from https://doi.org/10.12928/TELKOMNIKA.V18I4.14179

Hussein, A., Ahmad, F. K., & Kamaruddin, S. S. (2021). Cluster Analysis on Covid-19 Outbreak Sentiments from Twitter Data using K-means Algorithm. Journal of System and Management Sciences, 11(4), 167–189. Retrieved from https://doi.org/10.33168/JSMS.2021.0409

Irmanda, H. N., & Astriratma, R. (2020). Klasifikasi Jenis Pantun dengan Metode Support Vector Machines (SVM). Jurnal RESTI, 4(5), 915–922.

Kartika Delimayanti, M., Sari, R., Laya, M., Reza Faisal, M., & Pahrul, dan. (2021). Pemanfaatan Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir di Twitter. Edu Komputika, 8(1). Retrieved from http://journal.unnes.ac.id/sju/index.php/edukom

Khalid, E. T., Talal, E. B., Faraj, M. K., & Yassin, A. A. (2022). Sentiment analysis system for COVID-19 vaccinations using data of Twitter. Indonesian Journal of Electrical Engineering and Computer Science, 26(2), 1156–1164. Retrieved from https://doi.org/10.11591/ijeecs.v26.i2.pp1156-1164

Kurniawan, S., Gata, W., Ayu Puspitawati, D., Nurmalasari, Tabrani, M., & Novel, K. (2019). Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online. Jurnal RESTI, 3(2), 176–183.

Muktafin, E. H., & Kusrini, P. (2021). Sentiments analysis of customer satisfaction in public services using K-nearest neighbors’ algorithm and natural language processing approach. Telkomnika (Telecommunication Computing Electronics and Control), 19(1), 146–154. Retrieved from https://doi.org/10.12928/TELKOMNIKA.V19I1.17417

Nofiyanti, E., & Oki Nur Haryanto, E. M. (2021). Analisis Sentimen terhadap Penanggulangan Bencana di Indonesia. Jurnal Ilmiah SINUS, 19(2), 17. Retrieved from https://doi.org/10.30646/sinus.v19i2.563

Putri Nirwandani, E., & Cahya Wihandika, R. (2021). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Mandiri Online Menggunakan Metode Modified Term Frequency Scheme Dan Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputere, 5(3), 1039–1047. Retrieved from http://j-ptiik.ub.ac.id

Romli, I., Prameswari R, S., & Kamalia, A. Z. (2021). Sentiment Analysis about Large-Scale Social Restrictions in social media Twitter Using Algoritm K-Nearest Neighbor. Jurnal Online Informatika, 6(1), 96. Retrieved from https://doi.org/10.15575/join.v6i1.670

Setiawan, H., Utami, E., & Sudarmawan, S. (2021). Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes. Jurnal Komtika (Komputasi Dan Informatika), 5(1), 43–51. Retrieved from https://doi.org/10.31603/komtika.v5i1.5189

Sitepu, M. B., Munthe, I. R., & Harahap, S. Z. (2022). Implementation of Support Vector Machine Algorithm for Shopee Customer Sentiment Analysis. Sinkron, 7(2), 619–627. Retrieved from https://doi.org/10.33395/sinkron.v7i2.11408

Syahputra, R., Yanris, G. J., & Irmayani, D. (2022). SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter. Sinkron, 7(2), 671–678. Retrieved from https://doi.org/10.33395/sinkron.v7i2.11430

Downloads


Crossmark Updates

How to Cite

Saddam, M. A. ., Dewantara, E. K. ., & Solichin, A. . (2023). Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 470-479. https://doi.org/10.33395/sinkron.v8i1.12063