Determination of qualified human resources using the ANFIS method

Authors

  • Ahmad Alfauzan Amri Universitas Prima Indonesia
  • Rohit Roshan Universitas Prima Indonesia
  • Debby Ananda Universitas Prima Indonesia
  • Richard Fernando Tarigan Universitas Prima Indonesia
  • Yano Sabar M Wong Faculty of Technology and Computer Science, Universitas Prima Indonesia Medan, Indonesia
  • Mardi Turnip Universitas Prima Indonesia

DOI:

10.33395/sinkron.v8i1.12093

Keywords:

HR, ANFIS, questionnaire, quantitative description

Abstract

To improve the quality of education is very closely related to the problem of human resources. One of the main key in creating professional human resource lies in the recruitment process, workforce selection and training. Finding a professional and qualified workforce is not easy and a must in an organization or university in screening new employees or lecturers. Therefore we need a system for organizations and universities to be able to get the right people, qualified and placed according to their abilities. This research was conducted using quantitative descriptive research methods and data collection methods in the form of questionnaires and using Adaptive Neuro-Fuzzy Inference System (ANFIS). From the results of testing the data this algorithm shows a data accuracy rate of 77 percent 

Keywords: HR, ANFIS, questionnaire, quantitative description

GS Cited Analysis

Downloads

Download data is not yet available.

References

M. Muslihudin, F. Triananingsih, K. Kasmi, and L. Anggraei, “Pembuatan Model Penilaian Indeks Kinerja Dosen Menggunakan Metode Fuzzy Simple Additive Weighting,” Semnasteknomedia Online, vol. 5, no. 1, pp. 3-5–25, 2017, [Online]. Available:

https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1656.

Wahyudi, “Kinerja Dosen : Kontribusinya Terhadap Akreditasi,” Sci. J. Reflect. Econ. Accounting, Manag. Bus., vol. 3, no. 4, pp. 401–410, 2020, doi: 10.5281/zenodo.4427642.

J. Mantiri, “PERAN PENDIDIKAN DALAM MENCIPTAKAN SUMBER DAYA MANUSIA

BERKUALITAS di PROVINSI SULAWESI UTARA,” J. Civ. Educ. Media Kaji. Pancasila dan

Kewarganegaraan, vol. 3, no. 1, p. 20, 2019, doi: 10.36412/ce.v3i1.904.

D. A. Ofori et al., “No 主観的健康感を中心とした在宅高齢者における健康関連指標に関する共分散構造分析Title,” Molecules, vol. 2, no. 1, pp. 1–12, 2020, [Online]. Available: http://clik.dva.gov.au/rehabilitation-library/1-introduction-rehabilitation%0Ahttp://www.scirp.org/journal/doi.aspx?

DOI=10.4236/as.2017.81005%0Ahttp://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/as.2012.34066%0Ahttp://dx.doi.org/10.1016/j.pbi.201.

A. A. Zakri and H. Firdaus, “Penerapan anfis untuk peramalan gangguan pada transformator daya,” Pros. Pakar,

no. March, pp. 1–7, 2019.

H. H. FAKHRUDDIN et al., “Strategi Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) pada Kendali Motor Induksi 3 Fase Metode Vektor-Tidak Langsung,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 4, p. 786, 2021, doi: 10.26760/elkomika.v9i4.786.

N. Triana, “Sistem Pakar Diagnosa Penyakit Pada Tanaman Seledri Menggunakan Metode Anfis,” J. Terap. Inform. Nusant., vol. 1, no. 8, pp. 418–423, 2020, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin/article/view/603.

A. P. Tampubolon, K. N. Lase, K. M. Situngkir, and S. Sianturi, “Aplikasi Matlab pada Integral Lipat Dua,” J. Pendidik. Fis., vol. 1, no. 1, pp. 1–9, 2021.

T. Febrianti and E. Harahap, “Penggunaan Aplikasi MATLAB Dalam Pembelajaran Program Linear The Use of MATLAB Applications in Linear Programming Learning,” J. Mat., vol. 20, no. 1, pp. 1–7, 2021.

Hossein, Karimi, Mohammad, T.H. Beheshti, Amin, Ramezani,Hamidreza, Zareipour. (2021). Intelligent control

of islanded AC microgrids based on adaptive neuro-fuzzy inference system. International Journal of Electrical Power and Energy Systems.

Downloads


Crossmark Updates

How to Cite

Amri , A. A. ., Roshan, R. . ., Ananda, D. ., Tarigan, R. F. ., Wong, Y. S. M. ., & Turnip, M. . (2023). Determination of qualified human resources using the ANFIS method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 512-516. https://doi.org/10.33395/sinkron.v8i1.12093