Determination of qualified human resources using the ANFIS method
DOI:
10.33395/sinkron.v8i1.12093Keywords:
HR, ANFIS, questionnaire, quantitative descriptionAbstract
To improve the quality of education is very closely related to the problem of human resources. One of the main key in creating professional human resource lies in the recruitment process, workforce selection and training. Finding a professional and qualified workforce is not easy and a must in an organization or university in screening new employees or lecturers. Therefore we need a system for organizations and universities to be able to get the right people, qualified and placed according to their abilities. This research was conducted using quantitative descriptive research methods and data collection methods in the form of questionnaires and using Adaptive Neuro-Fuzzy Inference System (ANFIS). From the results of testing the data this algorithm shows a data accuracy rate of 77 percent
Keywords: HR, ANFIS, questionnaire, quantitative description
Downloads
References
M. Muslihudin, F. Triananingsih, K. Kasmi, and L. Anggraei, “Pembuatan Model Penilaian Indeks Kinerja Dosen Menggunakan Metode Fuzzy Simple Additive Weighting,” Semnasteknomedia Online, vol. 5, no. 1, pp. 3-5–25, 2017, [Online]. Available:
https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1656.
Wahyudi, “Kinerja Dosen : Kontribusinya Terhadap Akreditasi,” Sci. J. Reflect. Econ. Accounting, Manag. Bus., vol. 3, no. 4, pp. 401–410, 2020, doi: 10.5281/zenodo.4427642.
J. Mantiri, “PERAN PENDIDIKAN DALAM MENCIPTAKAN SUMBER DAYA MANUSIA
BERKUALITAS di PROVINSI SULAWESI UTARA,” J. Civ. Educ. Media Kaji. Pancasila dan
Kewarganegaraan, vol. 3, no. 1, p. 20, 2019, doi: 10.36412/ce.v3i1.904.
D. A. Ofori et al., “No 主観的健康感を中心とした在宅高齢者における健康関連指標に関する共分散構造分析Title,” Molecules, vol. 2, no. 1, pp. 1–12, 2020, [Online]. Available: http://clik.dva.gov.au/rehabilitation-library/1-introduction-rehabilitation%0Ahttp://www.scirp.org/journal/doi.aspx?
DOI=10.4236/as.2017.81005%0Ahttp://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/as.2012.34066%0Ahttp://dx.doi.org/10.1016/j.pbi.201.
A. A. Zakri and H. Firdaus, “Penerapan anfis untuk peramalan gangguan pada transformator daya,” Pros. Pakar,
no. March, pp. 1–7, 2019.
H. H. FAKHRUDDIN et al., “Strategi Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) pada Kendali Motor Induksi 3 Fase Metode Vektor-Tidak Langsung,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 4, p. 786, 2021, doi: 10.26760/elkomika.v9i4.786.
N. Triana, “Sistem Pakar Diagnosa Penyakit Pada Tanaman Seledri Menggunakan Metode Anfis,” J. Terap. Inform. Nusant., vol. 1, no. 8, pp. 418–423, 2020, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin/article/view/603.
A. P. Tampubolon, K. N. Lase, K. M. Situngkir, and S. Sianturi, “Aplikasi Matlab pada Integral Lipat Dua,” J. Pendidik. Fis., vol. 1, no. 1, pp. 1–9, 2021.
T. Febrianti and E. Harahap, “Penggunaan Aplikasi MATLAB Dalam Pembelajaran Program Linear The Use of MATLAB Applications in Linear Programming Learning,” J. Mat., vol. 20, no. 1, pp. 1–7, 2021.
Hossein, Karimi, Mohammad, T.H. Beheshti, Amin, Ramezani,Hamidreza, Zareipour. (2021). Intelligent control
of islanded AC microgrids based on adaptive neuro-fuzzy inference system. International Journal of Electrical Power and Energy Systems.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Ahmad Alfauzan Amri , Rohit Roshan, Debby Ananda, Mardi Turnip, Richard Fernando Tarigan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.