Customer Classification Using Naive Bayes Classifier With Genetic Algorithm Feature Selection
DOI:
10.33395/sinkron.v8i1.12182Keywords:
customer classification, Naive Bayes Classifier, Genetic Algorithm Feature SelectionAbstract
There is a tendency to decrease the number of speedy customers in the operational area of North Sumatra due to customer dissatisfaction. Termination of employment is carried out by the customer against PT. Telekomunikasi Indonesia, Tbk in North Sumatra. There is no management of customer data classification so that classification information based on certain product purchases cannot be known. Naïve Bayes is a classification algorithm that is easy to use but has weaknesses which result in poor performance, therefore feature selection is needed, the genetic algorithm is an algorithm that is able to select attributes in research, will be selected based on the highest weight so that the accuracy of the prediction results is more optimal. The steps taken in the measurement model using the Naive Bayes Classifier (NBC) approach and the model using the GA-NBC approach obtained accurate results from cross validation measurements, Confusion Matrix, ROC curves for the classification of existing and speedy telephone subscribers. The stages of the Naive Bayes process are: data collection, data preprocessing, processing of the Naive Bayes Classifier algorithm. Then the results are validated and evaluated using the Text Mining Algorithm, and calculating the parameters based on the genetic algorithm. The accuracy produced by the Naive Bayes Classifier model is 85.08%. The accuracy produced by the Naive Bayes Classifier model with the selection of Genetic Algorithm features increased to 89.31%.
Downloads
References
Adebayo, A. O. & Mani Shanker Chaubey, M. S. (2019). Data Mining Classification Techniques On The Analysis Of Student’s Performance. Global Scientific Journal. 7(4). 79-95.
Arasa, R. A. & Setiawanb, N. A., (2022). Comparison Of Data Mining Classification Techniques For Heart Disease Prediction System. Jurnal Teknik Mesin, Elektro dan Ilmu Komputer. 2(2). 85-90.
Bakhtiar, M. Y. (2020). Klasifikasi Penelitian Dosen Menggunakan Naïve Bayes Classifier Dan Algoritma Genetika. STRING (Satuan Tulisan Riset dan Inovasi Teknologi). 5(2). 134-143.
Buani, D. C. P. (2021). Penerapan Algoritma Naïve Bayes dengan Seleksi Fitur Algoritma Genetika Untuk Prediksi Gagal Jantung. Evolusi: Jurnal Sains dan Manajemen. 9(2).
Maulana, D. & Religia, Y. (2021). Genetic Algorithm Optimization on Naive Bayes for Airline Customer Satisfaction Classification. JISA (Jurnal Informatika dan Sains). 4(2).
Muhamad, H., Prasojo, C. A., Sugianto, N. A., Surtiningsih, L & Cholissodin, I. (2017). Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). 4(3). 180-184.
Prayogi, T. F., Cholissodin, I. & Santoso, E. (2019). Klasifikasi Dokumen SAMBAT Online Menggunakan Metode Naive Bayes dan Seleksi Fitur Berbasis Algoritme Genetika. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Priyanti, Evi. (2021). Peningkatan Algoritma Naïve Bayes Menggunakan Algoritma Genetika Pada Klasifikasi Bakteri. JURNAL SWABUMI. 9(2). 85-88.
Shi, X., Li, G., Li, K., Liu, J., & Wang, R. (2020). Customer Classification Method of Logistics Enterprises Based on BP-AdaBoost. AMMS. Journal of Physics: Conference Series.
Siregar, N. C., Siregar, R. R. A. & Sudirman, M. Y. D. (2020). Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ). Jurnal Teknologia. 3(1). 102(110).
Soleman, C. D. O., Pramaita, N., & Sudarma. (2020). Classification Of Loyality Customer Using K-Means Clustering, Studi Case : PT. Sucofindo (Persero) Denpasar Branch. International Journal of Engineering and Emerging Technology. 5(2).
Syafii, A., Dwilestari, G. & Ajiz, A. (2022). Komparasi Algoritma Naïve Bayes Dan Algoritma C4.5 Dalam Klasifikasi Pelanggan Produk Indihome. Jurnal Sistem Informasi dan Manajemen(JURISMA). 10(2). 60-70.
VanderPlas, J. (2016). Python Data Science Handbook, In Depth: Naive Bayes Classification. Released November 2016. Publisher(s): O'Reilly Media, Inc. ISBN: 9781491912058.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Juliansyah Putra Tanjung, Fenny Chintya Tampubolon, Ari Wahyuda Panggabean, M. Anjas Asmara Nandrawan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.