Effect Effect of Gradient Descent With Momentum Backpropagation Training Function in Detecting Alphabet Letters
DOI:
10.33395/sinkron.v8i1.12183Keywords:
Letter Writing Recognition, Haar Wavelet, Backpropagation, Image, Artificial neural networkAbstract
The research uses the Momentum Backpropagation Neural Network method to recognize characters from a letter image. But before that, the letter image will be converted into a binary image. The binary image is then segmented to isolate the characters to be recognized. Finally, the dimension of the segmented image will be reduced using Haar Wavelet. One of the weaknesses of computer systems compared to humans is recognizing character patterns if not using supporting methods. Artificial Neural Network (ANN) is a method or concept that takes the human nervous system. In ANN, there are several methods used to train computers that are made, training is used to increase the accuracy or ability of computers to recognize patterns. One of the ANN algorithms used to train and detect an image is backpropagation. With the Artificial Neural Network (ANN) method, the algorithm can produce a system that can recognize the character pattern of handwritten letters well which can make it easier for humans to recognize patterns from letters that are difficult to read due to various error factors seen by humans. The results of the testing process using the Backpropagation algorithm reached 100% with a total of 90 trained data. The test results of the test data reached 100% of the 90 test data.
Downloads
References
Agus Perdana Windarto. (2017). Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(1), 12–23.
Budiharto, W., & Suhartono, D. (2014). ARTIFICIAL INTELLIGENCE KONSEP DAN PENERAPANNYA (Seno (ed.); ANDI Yogya).
Dalgleish, T., Williams, J. M. G. ., Golden, A.-M. J., Perkins, N., Barrett, L. F., Barnard, P. J., Au Yeung, C., Murphy, V., Elward, R., Tchanturia, K., & Watkins, E. (2014). Jaringan Syaraf Tiruan (Neural Network). In Journal of Experimental Psychology: General (Vol. 136, Issue 1).
Handayani, L., & Adri, M. (2015). Penerapan JST ( Backpropagation ) untuk Prediksi Curah Hujan ( Studi Kasus : Kota Pekanbaru ). November, 238–247.
Hayadi, B. H. (2018). Sistem Pakar. Deepublish.
Hayadi, B. H., Sudipa, I. G. I., & Windarto, A. P. (2021). Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 11–20. https://doi.org/10.30812/matrik.v21i1.1273
Herawan Hayadi, B., Bastian, A., Rukun, K., Jalinus, N., Lizar, Y., & Guci, A. (2018). Expert system in the application of learning models with Forward Chaining Method. International Journal of Engineering and Technology(UAE), 7(2.29 Special Issue 29), 845–848. https://doi.org/10.14419/ijet.v7i2.29.14269
Herawan Hayadi, B., Rukun, K., Ema Wulansari, R., Herawan, T., & Setaiwan, D. (2017). Expert System of Quail Disease Diagnosis Using Forward Chaining Method Chicken Growt h Rat e Monit oring Syst em Using Fuzzy Rule-Based Amirul Iqba Decision Making in t he Tea Leaves Diseases Det ect ion Using Mamdani Fuzzy Inference Met hod Expert System. Indonesian Journal of Electrical Engineering and Computer Science, 5(1), 207–214. https://doi.org/10.11591/ijeecs.v5.i1.pp
Lesnussa, Y. A., Latuconsina, S., & Persulessy, E. R. (2015). Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ). Jurnal Matematika Integratif, 11(2), 149–160.
Matodang, Z. A. (2013). Jaringan Syaraf Tiruan Dengan Algoritma Backpropagtion Untuk Penentuan Kelulusan Sidang Skripsi. Pelita Informatika Budi Darma, 4(1), 84–93.
Nuraeni, Y. (2009). Penerapan Jaringan Syaraf Tiruan Untuk Mengukur Tingkat Korelasi Antara Nem Dengan Ipk Kelulusan Mahasiswa. TELKOMNIKA (Telecommunication Computing Electronics and Control), 7(3), 195. https://doi.org/10.12928/telkomnika.v7i3.594
Purba, R. A., Samsir, S., Siddik, M., Sondang, S., & Nasir, M. F. (2020). The optimalization of backpropagation neural networks to simplify decision making. IOP Conference Series: Materials Science and Engineering, 830(2). https://doi.org/10.1088/1757-899X/830/2/022091
Ruslan, F. A., Samad, A. M., & Adnan, R. (2018). 4 Hours NNARX flood prediction model using “traingd” and “trainoss” training function: A comparative study. Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and Its Application, CSPA 2018, March, 77–81. https://doi.org/10.1109/CSPA.2018.8368689
Sukarno, N. M., Wirawan, P. W., & Adhy, S. (2013). Perancangan dan implementasi jaringan saraf tiruan. 5, 9–18.
Wanto, A. (2017). Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Jurnal & Penelitian Teknik Informatika, 2(2), 37–44.
Windarto, A. P., Dewi, L. S., & Hartama, D. (2017). Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm. International Journal of Recent Trends in Engineering & Research (IJRTER), 3(10), 1–12. https://doi.org/10.23883/IJRTER.2017.3482.J5BBS
Xu, Z., Dai, A. M., Kemp, J., & Metz, L. (2019). Learning an Adaptive Learning Rate Schedule. ArXiv, 1909.09712.
Yan, X., Xu, Y., Xing, X., Cui, B., Guo, Z., & Guo, T. (2020). Trustworthy Network Anomaly Detection Based on an Adaptive Learning Rate and Momentum in IIoT. IEEE Transactions on Industrial Informatics, 16(9), 6182–6192. https://doi.org/10.1109/TII.2020.2975227
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Putrama Alkhairi, Ela Roza Batubara, Rika Rosnelly, W Wanayaumini, Heru Satria Tambunan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.