Comparison of the K-Means Algorithm and C4.5 Against Sales Data
DOI:
10.33395/sinkron.v8i2.12224Abstract
In general, the process of collecting and grouping data requires a
long process. And if it has to be grouped manually it takes a very long time.
Therefore, data mining is a solution for clustering data - a lot of data to
classify it. In this research conducted at CV.Togu - Togu On Medan Branch,
data mining is applied using the K-Means process model and the C4.5
algorithm which provides a standard process for using data mining in various
fields used in classification because the results of this method easy to
understand and easy to interpret. . The K-means method is a non-herarical
method which is an algorithmic technique for grouping items into k clusters
by minimizing the distance of the SS (sum of square) to the cluster centroid.
In the K-means method, the number of clusters can be determined by the
researcher himself. And the testing methods used to measure cluster quality
are the Silhouette Coefficient and the Elbow Method. Based on the research
conducted, there are significant differences before and after using the two
methods. The results of the K-Means algorithm will be compared with the
results of the C4.5 algorithm in the form of rules (decision trees). This
research produces data on goods that have the highest level of
sales/behavior
Downloads
References
Damanik, I. S., Windarto, A. P., Wanto, A., Poningsih, Andani, S. R., & Saputra, W. (2019). Decision Tree Optimization in C4.5 Algorithm Using Genetic Algorithm. Journal of Physics: Conference Series, 1255(1). https://doi.org/10.1088/1742-6596/1255/1/012012
Hidayanti, I., Kurniawan, T. B., & Afriyudi, A. (2020). Perbandingan Dan Analisis Metode Klasifikasi Untuk Menentukan Konsentrasi Jurusan. Jurnal Ilmiah Informatika Global, 11(1), 16–21. https://doi.org/10.36982/jig.v11i1.1067
Kartikawati, L. (2022). Analisis Kualitas Pengelompokkan Algoritma K-Means di Knime dan Excel untuk PTMT Pasca Vaksinasi Covid-19. Ideguru: Jurnal Karya Ilmiah Guru, 7(1), 70–79. https://doi.org/10.51169/ideguru.v7i1.316
Lee, J. S. (2019). AUC4.5: AUC-Based C4.5 Decision Tree Algorithm for Imbalanced Data Classification. IEEE Access, 7, 106034–106042. https://doi.org/10.1109/ACCESS.2019.2931865
Mulyadin, I., & Winarso, D. S. (2019). Sistem Pendukung Keputusan Pemilihan Smartphone Menggunakan Metode Simple Additive Weighting. CAHAYAtech, 7(2), 88. https://doi.org/10.47047/ct.v7i2.13
Narulita, S., Oktaga, A. T., & Susanti, I. (2021). Pengujian Akurasi Model Prediksi Menggunakan Metode Data Mining Classification Decision Tree Algoritma C4 . 5. Jurnal Media Aplikom, 13(2), 15–29.
Nasution, F. M. (2019). Penerapan Metode K-Means Clustering Untuk Mengelompokkan Ketahanan Tanaman Pangan Kabupaten/Kota Diprovinsi Sumatera Utara. In Skripsi.
Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2), 48. https://doi.org/10.51557/pt_jiit.v6i2.659
Prasetyo, G. A., Santosa, R. G., & Chrismanto, A. R. (2017). Memprediksi Kategori Indeks Prestasi Mahasiswa. 5. https://doi.org/10.21460/jutei.2019.32.185
Pungky, A. (2019). Penerapan Metode K-Nn Untuk Memprediksi Hasil Pertanian Di Kabupaten Malang. JATI (Jurnal Mahasiswa Teknik Informatika), 3(1), 235–242.
Rozana, L., & Musfikar, R. (2020). Analisis Dan Perancangan Sistem Informasi Pengarsipan Surat Berbasis Web Pada Kantor Lurah Desa Dayah Tuha. Cyberspace: Jurnal Pendidikan Teknologi Informasi, 4(1), 14. https://doi.org/10.22373/cj.v4i1.6933
Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24
Sutoyo, M. N. (2019). Algoritma K-Means. 1, 1–7.
Wahyudi, I., Sulthan, M. B., & Suhartini, L. (2021). Analisa Penentuan Cluster Terbaik Pada Metode K-Means Menggunakan Elbow Terhadap Sentra Industri Produksi Di Pamekasan. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM), 2(2), 72–81. https://doi.org/10.31102/jatim.v2i2.1274
Widiyati, D. K., Wati, M., & Pakpahan, H. S. (2018). Penerapan Algoritma ID3 Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah di Kabupaten Kutai Kartanegara. Jurnal Rekayasa Teknologi Informasi (JURTI), 2(2), 125. https://doi.org/10.30872/jurti.v2i2.1864
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Eko Bambang Wijaya, Abdi Dharma, Daniel Heyneker

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.