Application of the Naïve Bayes Algorithm in Determining Sales Of The Month

Authors

  • Hendra Supendar Universitas Bina Sarana Informatika,Indonesia
  • Rusdiansyah Rusdiansyah Universitas Bina Sarana Informatika,Indonesia
  • Nining Suharyanti Universitas Bina Sarana Informatika,Indonesia
  • Tuslaela Universitas Nusamandiri

DOI:

10.33395/sinkron.v8i2.12293

Keywords:

Sales Of The Month, absence , Sales Invoice, Sales Targets

Abstract

One important factor for creating a healthy and growing company is the existence of sales rewards for employees to achieve sales targets every month. Assessing employees is not an easy thing when there are so many employees. This will make the assessment team have to look at the criteria carefully and carefully. Data manipulation can occur because it is difficult to make decisions with such large criteria and data without automated data mining. As a result, the company will not get competitive human resources. Sales targets are one of the keys to sales success because with sales targets, the sales prediction value can be used as a guide as a reference in determining product sales. One way to make better sales predictions is by utilizing data mining processing using the Naive Bayes algorithm. The Naive Bayes algorithm calculates the probability value of each of the attributes examined including attendance, sales targets and sales returns. Research with employee absence criteria, monthly sales and monthly sales invoice returns. From the results of the research that has been done, it can be concluded that the application of the Naive Bayes classifier method to the target data set for sales of goods achieves an optimization level of 95.78%, with attendance criteria greatly affecting employee performance so that product sales targets each month can be achieved

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ardiansyah, D. (2018). Algoritma c4.5 untuk klasifikasi calon peserta lomba cerdas cermat siswa smp dengan menggunakan aplikasi rapid miner. Jurnal Inkofar, 1(2), 5–12.

Eko, A. (2018). Penerapan Data Mining Pada Penjualan Barang Menggunakan Metode Naive Bayes Classifier Untuk Optimasi Strategi Pemasaran. Jurnal Teknologi Informasi Dan Komunikasi, (April), 100–110.

Handoko, K. (2018). Data Mining Pada Jumlah Penumpang Menggunakan Metode Clustering. SNISTEK, (1), 97–102.

Irawan, B. (2018). Organisasi formal dan informal: tinjauan konsep, perbandingan, dan studi kasus. Administrative Reform, 6(4), 195–220.

Irnanda, K. F. (2020). Penerapan Klasifikasi C4 . 5 Dalam Meningkatkan Kecakapan Berbahasa Inggris dalam Masyarakat. SAINTEKS, 304–308.

Irnanda, K. F. (2021). Analisa Klasifikasi C4 . 5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi. MEDIA INFORMATIKA BUDIDARMA, 5, 327–331. https://doi.org/10.30865/mib.v5i1.2763

Iskandar, D. (2018). Strategi peningkatan kinerja perusahaan melalui pengelolaan sumber daya manusia dan kepuasan kerja dan dampaknya terhadap produktivitas karyawan. JIBEKA, 12, 23–31.

lra Zulfa. (2020). Implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode Apriori ( studi kasus : Kota Medan ). TEKNIKA: JURNAL SAINS DAN TEKNOLOGI, 16(1), 69–82.

Mutiara, E.-. (2020). Algoritma Klasifikasi Naive Bayes Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Tuberculosis (Tb). Swabumi, 8(1), 46–58. https://doi.org/10.31294/swabumi.v8i1.7668

Prayoga, N. D. (2018). Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK), 2(8), 2666–2671.

Ronaldi, A. A. (2021). Implementasi Data Mining Untuk Prediksi Penjualan Pestisida Pada Cv MitraA Artha Sejati Menggunakan ALgoritma Naive Bayes. KESATRIA( Jurnal Penerapan Sistem Informasi Dan Manajemen, 2(1), 39–46. Retrieved from http://eprosiding.ars.ac.id/index.php/pti

Sembiring, H. (2020). Pengaruh Motivasi Dan Lingkungan Kerja Terhadap Kinerja Karyawan Pada Bank Sinarmas Medan. Jurakunman, 13(1).

Sriyano, C. S. (2021). Pendeteksian Berita Hoax Menggunakan Naive Bayes Multinomial Pada Twitter dengan Fitur Pembobotan TF-IDF. Ie-Proceeding of Engineering, 8(2), 3396–3405.

Suwarna, A. (2017). Pengaruh Kualitas Jasa Terhadap Loyalitas Pelanggan Indosat Im3 Prabayar Di Desa Sangkanhurip. M a n a j e m e n E k o n o m i d a n A k u n t a n s I, 1(2), 41–63.

Utami, S. F. (2020). Penerapan Data Mining Algoritma Decision Tree Berbasis PSO. Sainteks, 677–681.

Wijaya, H. D. (2020). Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat. Jurnal Informatika, 7(1), 1–7. https://doi.org/10.31311/ji.v7i1.6203

Downloads


Crossmark Updates

How to Cite

Supendar, H., Rusdiansyah , R. ., Suharyanti, N. ., & Tuslaela. (2023). Application of the Naïve Bayes Algorithm in Determining Sales Of The Month. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 873-879. https://doi.org/10.33395/sinkron.v8i2.12293

Most read articles by the same author(s)

1 2 > >>