Sentiment Analysis of Beauty Product Applications using the Naïve Bayes Method


  • Tiara Syavitri Rambe Universitas Labuhanbatu
  • Mila Nirmala Sari Hasibuan Universitas Labuhanbatu, Indonesia
  • Muhammad Halmi Dar Universitas Labuhanbatu, Indonesia




Beauty, Naïve Bayes, Review, Sentiment Analysis, Wordcloud.


The number of beauty products that appear on the market makes every producer compete in attracting consumers. One of the facilities provided by manufacturers to make it easier for consumers to shop is an online shopping application that can be accessed via gadgets. Where the feature of the application is the availability of user review services User reviews are often used as a recommendation for the product to be purchased. The more positive the reviews that appear, the greater the consumer's confidence to buy the product; conversely, the more negative the reviews that appear, the more reluctant consumers are to buy. This study aims to find out how much accuracy the Naïve Bayes algorithm has in conducting sentiment analysis on user reviews of beauty product applications with different combinations of training and test data. Furthermore, it is also important to know the frequency of words that often appear in the review. The sentiment class used is divided into three, namely, positive, negative, and neutral. This research method includes a number of stages, namely: data collection, data labeling, text pre-processing, data visualization, TF-IDF, sentiment analysis, etc., until the results are obtained. This research has produced the highest accuracy rate of 90.08% in the Naïve Bayes algorithm, with a composition of 90% training data and 10% test data. While the word that often appears in user reviews is "application," with a frequency of 446 occurrences, it is followed by the word "product," 444 times, and the word "price," 312 times. The greater the amount of training data used, the higher the level of accuracy resulting from the Naïve Bayes algorithm. Meanwhile, the greater the amount of test data used, the lower the resulting accuracy value.

GS Cited Analysis


Download data is not yet available.


Afdhaluzzikri, A., Mawengkang, H., & Sitompul, O. S. (2022). Perfomance of Naive Bayes method with data weighting. SinkrOn, 7(3), 817–821.

Annur, C. M. (2022). 8 Produk yang Paling Diminati Konsumen Saat Belanja Online, Apa Saja? Katadata, 1. Retrieved from

Astuti, T., & Astuti, Y. (2022). Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO). Jurnal Media Informatika Budidarma, 6(4), 1806.

Azhar, N., Adikara, P. P., & Adinugroho, S. (2021). Analisis Sentimen Review Kedai Kopi Menggunakan Metode Naive Bayes dengan Seleksi Fitur Algoritme Genetika. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 609.

Hariguna, T., Baihaqi, W. M., & Nurwanti, A. (2019). Sentiment Analysis of Product Reviews as A Customer Recommendation Using the Naive Bayes Classifier Algorithm. International Journal of Informatics and Information Systems, 2(2), 48–55.

Indonesia, R. (n.d.). RAENA Reseller & Dropship App. Retrieved from Google Play website:

Jiaxin, S. (2020). Aspect-Based Sentiment Analysis on Mobile Game Reviews Using Deep Learning. Graduate School of Computer and Information Sciences, Hosei University, 15, 1–6.

Kabiru, I. N., & Sari, P. K. (2019). Analisa Konten Media Sosial E-Commerce Pada Instagram Menggunakan Metode Sentimen Analysis Dan LDA-Based Topic Modeling (Studi Kasus : Shopee Indonesia). E-Proceeding of Management, 6(1), 12–19.

Ma, Y., Peng, H., & Cambria, E. (2018). Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM. The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 5876–5883.

Muktafin, E. H., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen pada Review Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32–42.

Negara, A. B. P., Muhardi, H., & Putri, I. M. (2020). Analisis Sentimen Maskapai Penerbangan Menggunakan Metode Naive Bayes dan Seleksi Fitur Information Gain. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(3), 599.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. Retrieved from

Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 162–170.

Rhohmawati, U., Slamet, I., & Pratiwi, H. (2019). Sentiment Analysis Using Maximum Entropy on Application Reviews (Study Case: Shopee on Google Play). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 5(1), 44–49.

Rolliawati, D., Khalid, K., & Rozas, I. S. (2020). Teknologi Opinion Mining untuk Mendukung Strategic Planning. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(2), 293.

Saputra, F. T., Nurhadryani, Y., Wijaya, S. H., & Defina, D. (2021). Analisis Sentimen Bahasa Indonesia pada Twitter Menggunakan Struktur Tree Berbasis Leksikon. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 135.

Sihombing, L. O., Hannie, H., & Dermawan, B. A. (2021). Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), 233–242.

Wiratama, G. P., & Rusli, A. (2019). Sentiment Analysis of Application User Feedback in Bahasa Indonesia Using Multinomial Naive Bayes. 2019 5th International Conference on New Media Studies (CONMEDIA), 223–227.


Crossmark Updates

How to Cite

Rambe, T. S., Hasibuan, M. N. S. ., & Dar, M. H. . (2023). Sentiment Analysis of Beauty Product Applications using the Naïve Bayes Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 980-989.

Most read articles by the same author(s)

1 2 > >>