Decision Support for Selection of The Best Teachers Recommendations MCDM-AHP and ARAS Collaborative Methods


  • Akmaludin Universitas Nusa Mandiri, Jakarta, Indonesia
  • Erene Gernaria S. Universitas Nusa Mandiri, Jakarta, Indonesia
  • Rinawati Universitas Nusa Mandiri, Jakarta, Indonesia
  • Ester Arisawati Universitas Nusa Mandiri, Jakarta, Indonesia
  • Linda Sari Dewi Universitas Nusa Mandiri, Jakarta, Indonesia




AHP, ARAS, Multi-criteria, Teacher rating, Utilitas.


The role of the teacher is very important for the progress of the nation which can increase the dignity of the nation. The quality of education can increase thanks to the support of teachers who have good dedication in developing the learning process, especially in curriculum development. The teacher's biggest contribution is to make students ready to become the nation's credible successors. The purpose of this study is to provide an assessment in the selection process of teachers in an objective and selective manner. Method recommendations that can be raised in this study are collaborative methods that play a role in multi-criteria selection, namely MCDM-AHP and ARAS. Both of these methods can be said to be able to implement a selective and credible selection process for teachers which is carried out through the stages of data conversion and normalization which in turn can determine decision support in the multi-criteria selection process. The results of this study provide the best solution in selecting alternatives with a multi-criteria barometer for measurements with the ARAS method. The resulting decision support for the selection process of twenty teachers resulting in the best assessment can be seen from the optimization function which is based on the maximum value default divisor basis. The results obtained from obtaining the highest utility value of the twenty alternatives, the top three values that can be drawn as support for decision making are owned by A3 with a utility weight of 0.891, followed by the two highest ratings A17 and A14 with respective weights of 0.888 and 0.884.

GS Cited Analysis


Download data is not yet available.


Ahmad, I., Kim, S. K., Lee, J., & Rho, J. J. (2020). Analytic hierarchy process model for the selection of optimal internet access technologies in rural Pakistan. International Journal of the Analytic Hierarchy Process, 12(2), 254–271.

Akmaludin, A., Hartati, T., Purwanto, H., & Sukendar, T. (2020). The Best Selection of Programmers in Generation 4 . 0 Using AHP and ELECTRE Elimination Methods The Best Selection of Programmers in Generation 4 . 0 Using AHP and ELECTRE Elimination Methods. Journal Conference Series, 0–7.

Bošković, S., Radonjić-djogatović, V., Ralević, P., & Dobrodolac, M. (2021). Critic-Aras Method. International Journal for Traffic and Transport Engineering, 11(1), 17–29.

Bouayad, H., Benabbou, L., & Berrado, A. (2018). An analytic hierarchy process based approach for information technology governance framework selection. ACM International Conference Proceeding Series, 2018(October).

de Castro-Pardo, M., de la Fuente-Cabrero, C., Laguna-Sánchez, P., & Pérez-Rodríguez, F. (2019). Combining AHP and goal programming in the context of the assessment of e-learning. International Journal of the Analytic Hierarchy Process, 11(3), 301–312.

Goswami, S. S., & Mitra, S. (2020). Selecting the best mobile model by applying AHP-COPRAS and AHP-ARAS decision making methodology. International Journal of Data and Network Science, 4(1), 27–42.

Lin, A., & Lu, M. (2019). The site selection evaluation of photovoltaic applications using analytic hierarchy process in urban areas, China. ACM International Conference Proceeding Series, 119–123.

Lipovetsky, S. (2011). an Interpretation of the Ahp Global Priority As the Eigenvector Solution of an Anp Supermatrix. International Journal of the Analytic Hierarchy Process, 3(1), 70–78.

Mirdania, A., & Nawindah, N. (2021). Sistem Pendukung Keputusan Pemilihan Guru Terbaik Dengan Metode Analytical Hierarchy Process Dan Simple Additive Weighting. IDEALIS : InDonEsiA JournaL Information System, 4(1), 117–126.

Muhammad Lukman, H. (2022). Curriculum development and message design in E-learning based contextual using animation for Determinant Matrix Course. International Journal of Curriculum and Instruction, 14(3), 1813–1830.

Pramana, H. J., Mufizar, T., Anwar, D. S., & Septianingrum, I. (2022). Sistem Pendukung Keputusan Penilaian Kinerja Guru Dengan Metode AHP dan PROMETHEE. It (Informatic Technique) Journal, 10(1), 87.

Retnawati, H., Hadi, S., & Nugraha, A. C. (2016). Vocational high school teachers’ difficulties in implementing the assessment in curriculum 2013 in Yogyakarta Province of Indonesia. International Journal of Instruction, 9(1), 33–48.

Rostamzadeh, R., Esmaeili, A., Nia, A. S., Saparauskas, J., & Ghorabaee, M. K. (2017). A fuzzy ARAS method for supply chain management performance measurement in SMEs under uncertainty. Transformations in Business and Economics, 16(2A), 319–348.

Saaty, T. L. (2010). The Eigenvector In Lay Language 2 . What we learn when we have measurement. 2(2), 163–169.

Satria, B. (2020). Implementation of Additive Ratio Assessment (Aras) Method on Decision Support System for Recipient of Inhabitable House. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(1), 121–127.

Sholehah, M., & Maspiyanti, F. (2020). Sistem Pendukung Keputusan Pemilihan Guru Terbaik Menggunakan Metode Simple Additive Weighting Dan Topsis KATA KUNCI Sistem Pendukung Keputusan Pemilihan Guru Berprestasi Simple Additive Weigthing Topsis KORESPONDENSI. Jurnal Ilmiah Informatika, 8(2 September 2020), 12640.

Sulfasyah, S., Haig, Y., & Barratt-Pugh, C. (2015). Indonesian Teachers’ Implementation of New Curriculum Initiatives in Relation to Teaching Writing in Lower Primary School. International Journal of Education, 7(4), 53.

Syahputra, H., Syahrizal, M., Suginam, S., Nasution, S. D., & Purba, B. (2019). SPK Pemilihan Konten Youtube Layak Tonton Untuk Anak-Anak Menerapkan Metode Additive Ratio Assessment (ARAS). Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 1(1), 678–685.

The, F. O. R., Person, L. A. Y., & Lipovetsky, S. (1936). An Interpretation Of The AHP Eigenvector Solution GfK Custom Research North America 8401 Golden Valley Rd ., Minneapolis , MN 55427 , USA 2 . The AHP solution and its interpretation for the maximum eigenvalue λ yields the principal eigenvector α which ser. International Journal of Analytic Hierarchy Process, 2(2), 158–162.

Triajeng Pungkasanti, P., & Indriyawati, H. (2019). Application of The Aras Method In Problem Completion of Determining The Location of New Student Admission. Journal of Information Technology and Business, 2(1), 16–20.

Waas, D. V., Sudipa, I. G. I., Agus, I. P., & Darma, E. (2022). Comparison of Final Results Using Combination AHP-VIKOR And AHP-SAW Methods In Performance Assessment ( Case Imanuel Lurang Congregation ). International Journal of Information & Technology, 5(158), 612–623.

Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172.


Crossmark Updates

How to Cite

Akmaludin, A., S. , E. G. ., Rinawati , R. ., Arisawati , E. ., & Dewi , L. S. . (2023). Decision Support for Selection of The Best Teachers Recommendations MCDM-AHP and ARAS Collaborative Methods. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2036-2048.

Most read articles by the same author(s)

1 2 > >>