Proposed Enterprise Architecture on System Fleet Management: PT. Integrasia Utama
DOI:
10.33395/sinkron.v8i2.12387Keywords:
Enterprise Architecture, Fleet Management Services, Service Delivery, Vehicle Tracking, Driver performance monitoringAbstract
An information technology consulting firm that specializes in Global Positioning Systems provides fleet management services for many of its clients. The systems currently used by companies require more advanced modernization to ensure optimal service delivery. To overcome this challenge, a proposed enterprise architecture on system fleet management is presented in this paper. The proposed enterprise architecture is a comprehensive solution that includes the necessary hardware, software and operational processes to improve fleet management services. The proposed architecture is based on the Enterprise Architecture, which enables the integration of various systems and applications used by companies. The proposed architecture includes modules for vehicle tracking, fuel management, maintenance scheduling and driver performance monitoring. These modules work together to provide real-time data on fleet operations, enabling companies to make informed decisions regarding their fleet management services. The proposed architecture also incorporates an easy-to-use interface that simplifies the fleet management process and enhances customer satisfaction. The proposed system is scalable and easily adaptable to meet service requirements across multiple customers. In conclusion, the proposed enterprise architecture for system fleet management provides a comprehensive solution to the current challenges faced by companies as a corporate fleet service provider. The proposed architecture will improve service, reduce costs, and increase customer satisfaction.
Downloads
References
Achillas, C., Bochtis, D., Aidonis, D., Marinoudi, V., & Folinas, D. (2019). Voice-driven fleet management system for agricultural operations. Information Processing in Agriculture, 6(4), 471–478. https://doi.org/10.1016/j.inpa.2019.03.001
Alexandru, M., Dragos, C., & Bala-Constantin, Z. (2021). Digital Twin for automated guided vehicles fleet management. Procedia Computer Science, 199, 1363–1369. https://doi.org/10.1016/j.procs.2022.01.172
Dintén, R., García, S., & Zorrilla, M. (2023). Fleet management systems in Logistics 4.0 era: a real time distributed and scalable architectural proposal. Procedia Computer Science, 217(2022), 806–815. https://doi.org/10.1016/j.procs.2022.12.277
Hindarto, D., Indrajit, R. E., & Dazki, E. (2021). Sustainability of Implementing Enterprise Architecture in the Solar Power Generation Manufacturing Industry. Sinkron, 6(1), 13–24. https://jurnal.polgan.ac.id/index.php/sinkron/article/view/11115
Hindarto, D., & Santoso, H. (2021). Plat Nomor Kendaraan dengan Convolution Neural Network. Jurnal Inovasi Informatika, 6(2), 1–12. https://doi.org/10.51170/jii.v6i2.202
Julia, K., Kurt, S., & Ulf, S. (2017). Challenges in Integrating Product-IT into Enterprise Architecture - A case study. Procedia Computer Science, 121, 525–533. https://doi.org/10.1016/j.procs.2017.11.070
Korablev, V., Gugutishvili, D., Lepekhin, A., & Gerrits, B. (2021). Developing a Traffic Management System Architecture Model. Transportation Research Procedia, 54(2020), 918–926. https://doi.org/10.1016/j.trpro.2021.02.147
Kotsialos, A., & Vassilakopoulou, P. (2023). ScienceDirect ScienceDirect Fleet management enterprise systems and traffic control synergies : a literature review and research agenda. Procedia Computer Science, 219(2022), 529–536. https://doi.org/10.1016/j.procs.2023.01.321
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2020). Design and development of an IoT enabled platform for remote monitoring and predictive maintenance of industrial equipment. Procedia Manufacturing, 54(2019), 166–171. https://doi.org/10.1016/j.promfg.2021.07.025
Mozaryn, J., Bogusz, K., & Juszczynski, S. (2022). Development of PLC Based Fault Isolation and Remote IIoT Monitoring of Three Tank System. IFAC-PapersOnLine, 55(6), 175–180. https://doi.org/10.1016/j.ifacol.2022.07.125
Oroh, F. F., Indrajit2, R. E., Dazki, E., & Hindarto, D. (2022). Kajian Enterprise Resource Planning pada Industri Manufaktur Pengolahan Bambu menggunakan Arsitektur Enterprise. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 11(2), 335. https://doi.org/10.35889/jutisi.v11i2.843
Paganelli, A. I., Velmovitsky, P. E., Miranda, P., Branco, A., Alencar, P., Cowan, D., Endler, M., & Morita, P. P. (2021). A conceptual IoT-based early-warning architecture for remote monitoring of COVID-19 patients in wards and at home. Internet of Things, xxxx, 100399. https://doi.org/10.1016/j.iot.2021.100399
Ushakov, D., Dudukalov, E., Kozlova, E., & Shatila, K. (2022). The Internet of Things impact on smart public transportation. Transportation Research Procedia, 63, 2392–2400. https://doi.org/10.1016/j.trpro.2022.06.275
Wedha, B. Y. (2022). Enterprise Architecture untuk Industri Truk Logistik di Indonesia. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1137–1150. https://doi.org/10.35957/jatisi.v9i2.1255
Wedha, B. Y., Helmi, H., Dazki, E., & Indrajit, R. E. (2022). Adopsi IoT Pada Core Process Trucking di Indonesia Dengan Menggunakan TOGAF Framework. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 230–243. https://doi.org/10.35957/jatisi.v9i1.1980
Wedha, B. Y., Karjadi, D. A., Wedha, A. E. P. B., & Santoso, H. (2022). Style Transfer Generator for Dataset Testing Classification. SinkrOn, 7(2), 448–454. https://doi.org/10.33395/sinkron.v7i2.11375
Wedha, B. Y., Wedha, A. B. P. B., & Haryono, H. (2022). Design and Build Mini Digital Scale using Internet of Things. SinkrOn, 7(2), 405–412. https://doi.org/10.33395/sinkron.v7i2.11345
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Alessandro Benito Putra Bayu Wedha, Ben Rahman, Djarot Hindarto, Bayu Yasa Wedha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.