Diagnostic on Car Internal Combustion Engine through Noise

Authors

  • William Surya Sjah Bina Nusantara (BINUS ASO), Indonesia
  • Ben Rahman Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia
  • Djarot Hindarto Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia https://orcid.org/0000-0001-7501-2610
  • Alessandro Benito Putra Bayu Wedha Bina Nusantara (BINUS ASO), Indonesia

DOI:

10.33395/sinkron.v8i2.12392

Keywords:

Noise; Internal Combustion Engine; Diagnostics; Car Sounds

Abstract

Internal Combustion Engines are known for their unique sound characteristics. Through these sound characteristics, an experienced car mechanic will be able to diagnose the type of engine damage just by listening to the sound. This reduces the need to disassemble components to pinpoint machine faults which also contributes to a significant reduction in overall repair time. The main aim of this paper is to build a process to identify faulty machines through engine noise analysis with visual data to determine machine faults at an early stage. By capturing various types of engine sounds, data visualization uses healthy engine sounds and broken engine sounds obtained from cars as well as various types of broken engine sounds that are usually found in vehicles. This audio data will be used in audio signal processing combined with a linear regression classification algorithm. Visualization data can distinguish various types of sounds that are commonly found in damaged or damaged engines such as clicks, ticks, knocks and other types of sounds to determine the types of damage that are usually found in internal combustion engines. The data used comes from Kaggle, which is public data which is widely used as general data for data science activities. Visually, data from vehicle engines can be seen from the data on which car brand is the best in terms of sound. The results using linear regression show the R-squared score (R^2) or also called the coefficient of determination reaching 91.95%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alam, M. M., Aktar, M. A., Idris, N. D. M., & Al-Amin, A. Q. (2023). World energy economics and geopolitics amid COVID-19 and post-COVID-19 policy direction. World Development Sustainability, 2(July 2022), 100048. https://doi.org/10.1016/j.wds.2023.100048

Carpinteiro, C., Lopes, J., Abelha, A., & Santos, M. F. (2023). ScienceDirect ScienceDirect A Comparative Study of Classification Algorithms for Early A Comparative Study of Classification Algorithms for Early Detection of Diabetes Detection of Diabetes. Procedia Computer Science, 220, 868–873. https://doi.org/10.1016/j.procs.2023.03.117

Dwyer, T., Cordeil, M., Czauderna, T., Delir Haghighi, P., Ens, B., Goodwin, S., Jenny, B., Marriott, K., & Wybrow, M. (2020). The Data Visualisation and Immersive Analytics Research Lab at Monash University. Visual Informatics, 4(4), 41–49. https://doi.org/10.1016/j.visinf.2020.11.001

Hindarto, D. (2022). Perbandingan Kinerja Akurasi Klasifikasi K-NN, NB dan DT pada APK Android. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 486–503. https://doi.org/10.35957/jatisi.v9i1.1542

Hindarto, D., & Handri Santoso. (2021). Android APK Identification using Non Neural Network and Neural Network Classifier. Journal of Computer Science and Informatics Engineering (J-Cosine), 5(2), 149–157. https://doi.org/10.29303/jcosine.v5i2.420

Hindarto, D., Indrajit, R. E., & Dazki, E. (2021). Sustainability of Implementing Enterprise Architecture in the Solar Power Generation Manufacturing Industry. Sinkron, 6(1), 13–24. https://jurnal.polgan.ac.id/index.php/sinkron/article/view/11115

Hindarto, D., & Santoso, H. (2022). PERFORMANCE COMPARISON OF SUPERVISED LEARNING USING NON-NEURAL NETWORK AND NEURAL NETWORK. Janapati, 11, 49–62.

Huang, A., Xu, R., Chen, Y., & Guo, M. (2023). Research on multi-label user classification of social media based on ML-KNN algorithm. Technological Forecasting and Social Change, 188(August 2022), 122271. https://doi.org/10.1016/j.techfore.2022.122271

Hyodo, S., Yoshii, T., Satoshi, M., & Hirotoshi, S. (2017). An analysis of the impact of driving time on the driver’s behavior using probe car data. Transportation Research Procedia, 21, 169–179. https://doi.org/10.1016/j.trpro.2017.03.086

Ivanov, E., Khoroshavin, A., & Karsakov, A. (2020). Visual programming environment based on data visualization grammar specification. Procedia Computer Science, 178(2019), 434–439. https://doi.org/10.1016/j.procs.2020.11.045

Li, L., Lin, J., Wu, N., Xie, S., Meng, C., Zheng, Y., Wang, X., & Zhao, Y. (2022). Review and outlook on the international renewable energy development. Energy and Built Environment, 3(2), 139–157. https://doi.org/10.1016/j.enbenv.2020.12.002

Liu, J., Li, X., Zhang, X., Xu, S., & Dong, L. (2011). Misfire diagnosis of diesel engine based on rough set and Neural Network. Procedia Engineering, 16, 224–229. https://doi.org/10.1016/j.proeng.2011.08.1076

Permai, S. D., & Tanty, H. (2018). Linear regression model using bayesian approach for energy performance of residential building. Procedia Computer Science, 135, 671–677. https://doi.org/10.1016/j.procs.2018.08.219

Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (2017). Impact of Transportation Restructuring on Thailand Energy Outlook. Energy Procedia, 138, 393–398. https://doi.org/10.1016/j.egypro.2017.10.178

Vidal, T. Y. G., Claude Valery, N. A., Emmanuel, A. N., Nelson, I. B. J., Moïse, L. N., Cyrille, M., & Ruben, M. (2021). Performance map of a LPG-diesel dual-fuel engine based on experimental and non-linear least squares determined wiebe function. Scientific African, 13. https://doi.org/10.1016/j.sciaf.2021.e00900

Wedha, B. Y. (2022). Enterprise Architecture untuk Industri Truk Logistik di Indonesia. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1137–1150. https://doi.org/10.35957/jatisi.v9i2.1255

Wedha, B. Y., Karjadi, D. A., Wedha, A. E. P. B., & Santoso, H. (2022). Style Transfer Generator for Dataset Testing Classification. SinkrOn, 7(2), 448–454. https://doi.org/10.33395/sinkron.v7i2.11375

Wolak, A., Molenda, J., Zając, G., & Janocha, P. (2021). Identifying and modelling changes in chemical properties of engine oils by use of infrared spectroscopy. Measurement: Journal of the International Measurement Confederation, 186. https://doi.org/10.1016/j.measurement.2021.110141

Zheng, T., Zhang, Y., Li, Y., & Shi, L. (2019). Real-time combustion torque estimation and dynamic misfire fault diagnosis in gasoline engine. Mechanical Systems and Signal Processing, 126, 521–535. https://doi.org/10.1016/j.ymssp.2019.02.048

Downloads


Crossmark Updates

How to Cite

Sjah, W. S. ., Rahman, . B. ., Hindarto, D., & Wedha, A. B. P. B. . (2023). Diagnostic on Car Internal Combustion Engine through Noise. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 1128-1139. https://doi.org/10.33395/sinkron.v8i2.12392

Most read articles by the same author(s)

1 2 3 4 > >>