Detects Damage Car Body using YOLO Deep Learning Algorithm


  • Yonathan Wijaya Gustian Bina Nusantara (BINUS ASO), Indonesia
  • Ben Rahman Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia
  • Djarot Hindarto Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Indonesia
  • Alessandro Benito Putra Bayu Wedha Bina Nusantara (BINUS ASO), Indonesia




Deep Learning, Detection, , Cracks, Car Body, Damage, Scratches


This journal presents a technique for detecting scratches, cracks and other damage to car bodies using machine learning methods. This method is used to improve process efficiency and checking accuracy and can also reduce the cost and time required for manual inspection. The method includes collecting image datasets of cars in good and damaged condition, followed by preprocessing and segmentation to separate damaged or damaged car parts. not broken. Then, it is followed by a deep learning algorithm, namely You Only Look Once, or Faster Region-based Convolutional Neural Networks, which is used to build a detection model. The model is trained and tuned using the collected data, then evaluated using the test data to measure the accuracy and precision of the detection results. The experimental results show that the proposed method achieves high accuracy and efficiency in detecting scratches, cracks, and other defects on the car body, with precision of an average of more than 70%. This method provides a promising approach to improving the car body inspection process which can be used by taxi companies to help inspect and maintain vehicles more quickly and accurately, to help with insurance, avoid accidents and so on.

GS Cited Analysis


Download data is not yet available.


Bipin Nair, B. J., Aadith Raj, K., Kedar, M., Vaishak, S. P., & Sreejil, E. (2023). Ancient Epic Manuscript Binarization and Classification Using False Color Spectralization and VGG-16 Model. Procedia Computer Science, 218, 631–643.

Chirgaiya, S., & Rajavat, A. (2023). Tiny object detection model based on competitive multi-layer neural network (TOD-CMLNN). Intelligent Systems with Applications, 18(September 2022), 200217.

Hadianto, E., Amanda, D., Hindarto, D., Makmur, A., & Santoso, H. (2023). Design and Development of Coffee Machine Control System Using Fuzzy Logic. Sinkron, 8(1), 130–138.

Hindarto, D., Indrajit, R. E., & Dazki, E. (2021). Sustainability of Implementing Enterprise Architecture in the Solar Power Generation Manufacturing Industry. Sinkron, 6(1), 13–24.

Hindarto, D., & Santoso, H. (2021). Plat Nomor Kendaraan dengan Convolution Neural Network. Jurnal Inovasi Informatika, 6(2), 1–12.


Kong, L., Wang, J., & Zhao, P. (2022). YOLO-G: A Lightweight Network Model for Improving the Performance of Military Targets Detection. IEEE Access, 10, 55546–55564.

Lee, Y., Yun, J., Hong, Y., Lee, J., & Jeon, M. (2018). Accurate License Plate Recognition and Super-Resolution Using a Generative Adversarial Networks on Traffic Surveillance Video. 2018 IEEE International Conference on Consumer Electronics - Asia, ICCE-Asia 2018, June 2018, 1–4.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788.

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, 6517–6525.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.

Rostianingsih, S., Setiawan, A., & Halim, C. I. (2020). COCO (Creating Common Object in Context) Dataset for Chemistry Apparatus. Procedia Computer Science, 171(2019), 2445–2452.

Saputra, A. D., Hindarto, D., & Santoso, H. (2023). Disease Classification on Rice Leaves using DenseNet121, DenseNet169, DenseNet201. Sinkron, 8(1), 48–55.

Sze, E., Santoso, H., & Hindarto, D. (2022). Review Star Hotels Using Convolutional Neural Network. 7(1), 2469–2477.

Tong, K., & Wu, Y. (2023). Rethinking PASCAL-VOC and MS-COCO dataset for small object detection. Journal of Visual Communication and Image Representation, 103830.

van Ruitenbeek, R. E., & Bhulai, S. (2022). Convolutional Neural Networks for vehicle damage detection. Machine Learning with Applications, 9(December 2021), 100332.

Wang, S., Xia, X., Ye, L., & Yang, B. (2021). Automatic detection and classification of steel surface defect using deep convolutional neural networks. Metals, 11(3), 1–23.

Wedha, B. Y., Helmi, H., Dazki, E., & Indrajit, R. E. (2022). Adopsi IoT Pada Core Process Trucking di Indonesia Dengan Menggunakan TOGAF Framework. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 230–243.

Wedha, B. Y., Karjadi, D. A., Wedha, A. E. P. B., & Santoso, H. (2022). Style Transfer Generator for Dataset Testing Classification. SinkrOn, 7(2), 448–454.

Xue, G., Li, S., Hou, P., Gao, S., & Tan, R. (2023). Research on lightweight Yolo coal gangue detection algorithm based on resnet18 backbone feature network. Internet of Things (Netherlands), 22(March), 100762.


Crossmark Updates

How to Cite

Gustian, Y. W. ., Rahman, B. ., Hindarto, D., & Wedha, A. B. P. B. . (2023). Detects Damage Car Body using YOLO Deep Learning Algorithm . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 1153-1165.

Most read articles by the same author(s)

1 2 > >>