Survey Paper: Optimization and Monitoring of Kubernetes Cluster using Various Approaches

Authors

  • Ridwan Satrio Hadikusuma Universitas Katolik Indonesia Atma Jaya
  • Lukas Universitas Katolik Indonesia Atma Jaya
  • Karel Octavianus Bachri Universitas Katolik Indonesia Atma Jaya

DOI:

10.33395/sinkron.v8i3.12424

Keywords:

Kubernetes Cluster, Optimization, Framework, Data Center Network, Resource Allocation

Abstract

This research compares different methods for optimizing and monitoring Kubernetes clusters. Three referenced journals are analyzed: "Kubernetes cluster optimization using hybrid shared-state scheduling framework" by Oana-Mihaela Ungureanu, Călin Vlădeanu, Robert Kooij; "Monitoring Kubernetes Clusters Using Prometheus and Grafana" by Salma Rachman Dira, Muhammad Arif Fadhly Ridha; and "Cluster Frameworks for Efficient Scheduling and Resource Allocation in Data Center Networks: A Survey" by Kun Wang, Qihua Zhou, Song Guo, and Jiangtao Luo. These journals explore various approaches to optimizing and monitoring Kubernetes clusters. This review concludes that selecting appropriate technologies for optimizing and monitoring Kubernetes clusters can enhance performance and resource management efficiency in data centre networks. The research addresses the problem of improving Kubernetes cluster performance through optimization and efficient monitoring. The required methods include utilizing hybrid state-sharing scheduling frameworks, implementing Prometheus and Grafana for monitoring, and employing efficient cluster frameworks. The study's findings demonstrate that adopting a hybrid shared-state scheduling framework can improve Kubernetes cluster performance. Additionally, leveraging Prometheus and Grafana as monitoring tools offer valuable insights into cluster health and performance. The survey also reveals various cluster frameworks that enable efficient scheduling and resource allocation in data centre networks. In conclusion, this research emphasizes the significance of employing suitable technologies to optimize and monitor Kubernetes clusters, leading to enhanced performance and efficient resource management in data centre networks. By leveraging appropriate scheduling frameworks and monitoring tools, organizations can optimize their utilization of Kubernetes clusters and ensure efficient resource allocation

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alyas, T., Tabassum, N., Waseem Iqbal, M., S. Alshahrani, A., Alghamdi, A., & Khuram Shahzad, S. (2023). Resource Based Automatic Calibration System (RBACS) Using Kubernetes Framework. Intelligent Automation & Soft Computing, 35(1), 1165–1179. https://doi.org/10.32604/iasc.2023.028815

Dira, S. R., & Ridha, M. A. F. (2022). Monitoring Kubernetes Cluster MenggunakanPrometheus dan Grafana.

Fajrina, M. N., Santoso, I., & Prakoso, T. (2021). PERANCANGAN KOMUNIKASI INTER CLUSTER ANTARA CLUSTER HEAD DENGAN GATEWAY (NODE SINK) MENGGUNAKAN PERUTEAN LEACH. Transient: Jurnal Ilmiah Teknik Elektro, 10(4), 718–724. https://doi.org/10.14710/transient.v10i4.718-724

Gherman, O. (2010). Data Communications in an HPC Hybrid Cluster and Performance Evaluation.

Ibe, O. C. (2017). Fundamentals of Data Communication Networks. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119436294

Li, H., Shen, J., Zheng, L., Cui, Y., & Mao, Z. (2023). Cost-efficient scheduling algorithms based on beetle antennae search for containerized applications in Kubernetes clouds. The Journal of Supercomputing, 79(9), 10300–10334. https://doi.org/10.1007/s11227-023-05077-7

Lu, W., Liang, L., Kong, B., Li, B., & Zhu, Z. (2020). AI-Assisted Knowledge-Defined Network Orchestration for Energy-Efficient Data Center Networks. IEEE Communications Magazine, 58(1), 86–92. https://doi.org/10.1109/MCOM.001.1800157

Ramos, F., Viegas, E., Santin, A., Horchulhack, P., Dos Santos, R. R., & Espindola, A. (2021). A Machine Learning Model for Detection of Docker-based APP Overbooking on Kubernetes. ICC 2021 - IEEE International Conference on Communications, 1–6. https://doi.org/10.1109/ICC42927.2021.9500259

Setiawan, M. A., & Fathony, I. A. N. (2023). Containerization of Shibboleth IdP as access management single sign-on (SSO) service based on integrated Kubernetes cluster with GitLab CI automation. 020035. https://doi.org/10.1063/5.0130139

Srivastava, S., Saxena, S., Buyya, R., Kumar, M., Shankar, A., & Bhushan, B. (2021). CGP: Cluster-based gossip protocol for dynamic resource environment in cloud. Simulation Modelling Practice and Theory, 108, 102275. https://doi.org/10.1016/j.simpat.2021.102275

Straesser, M., Mathiasch, J., Bauer, A., & Kounev, S. (2023). A Systematic Approach for Benchmarking of Container Orchestration Frameworks. Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, 187–198. https://doi.org/10.1145/3578244.3583726

Sun, G., Chen, Z., Yu, H., Du, X., & Guizani, M. (2019). Online Parallelized Service Function Chain Orchestration in Data Center Networks. IEEE Access, 7, 100147–100161. https://doi.org/10.1109/ACCESS.2019.2930295

Ungureanu, O.-M., Vlădeanu, C., & Kooij, R. (2019). Kubernetes cluster optimization using hybrid shared-state scheduling framework. ICFNDS ’19: Proceedings of the 3rd International Conference on Future Networks and Distributed Systems, No 2, 1–12. https://doi.org/10.1145/3341325.3341992

Valantasis, A., Makris, N., & Korakis, T. (2022). Orchestration Software for Resource Constrained Datacenters: An Experimental Evaluation. 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), 121–126. https://doi.org/10.1109/NetSoft54395.2022.9844043

Wang, K., Zhou, Q., Guo, S., & Luo, J. (2018). Cluster Frameworks for Efficient Scheduling and Resource Allocation in Data Center Networks: A Survey. IEEE Communications Surveys & Tutorials, 20(4), 3560–3580. https://doi.org/10.1109/COMST.2018.2857922

Downloads


Crossmark Updates

How to Cite

Hadikusuma, R. S. ., Lukas, & Karel Octavianus Bachri. (2023). Survey Paper: Optimization and Monitoring of Kubernetes Cluster using Various Approaches. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1357-1365. https://doi.org/10.33395/sinkron.v8i3.12424