Sentiment Analysis Of Tourist Reviews Using K-Nearest Neighbors Algorithm And Support Vector Machine
DOI:
10.33395/sinkron.v8i3.12447Keywords:
Sentiment Analysis, TripAdvisor, K-Nearest Neighbors, Support Vector Machine, Tourist Spot ReviewsAbstract
After Indonesia was awarded as a country with extraordinary natural charm, many foreign tourists came to Indonesia. According to the records of the Central Bureau of Statistics for 2020, approximately 5.47 million foreign tourists entered Indonesia. With the large number of foreign tourist visits, the need for tourist attractions is increasing, but finding information is now not difficult. One source of information for finding reviews of tourist attractions is TripAdvisor. On this website, there is a lot of information or reviews about various tourist attractions. However, the number of reviews makes tourists confused about identifying the quality of tourist attractions to be visited, so sentiment analysis needs to be done. Sentiment analysis itself is a technique to extract, identify, and understand sentiments or opinions contained in a text. In this research, two classification methods will be used in sentiment analysis techniques, namely K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM). Besides that, the object of this research will be to focus on the most popular tourist attractions in Indonesia according to Trip Advisor, namely Waterbom Bali, Mandala Suci Wenara Wana, Teras Sawah Tegalalang, Pura Tanah Lot, and Pura Luhur Uluwatu. The purpose of the research is to find out the results of accurate sentiment analysis for the five tourist attractions and compare the two algorithms used. and after testing, it was found that the Support Vector Machine algorithm is superior to the K-Nearest Neighbors algorithm.
Downloads
References
Arifiyanti, A. A., Fikri, M. F. P., & Utomo, B. (2022). Analisis Sentimen Ulasan Pengunjung Objek Wisata Gunung Bromo pada Situs Tripadvisor. Jurnal Sistem Informasi Dan Telematika (Telekomunikasi, Multimedia Dan Informatika), 13(1), 32–37.
Atimi, R. L., & Pratama, E. E. (2022). Implementasi Model Klasifikasi Sentimen Pada Review Produk Lazada Indonesia. Jurnal Sains Dan Informatika, 8, 88–96. https://doi.org/10.34128/jsi.v8i1.419
Diekson, Z. A., Prakoso, M. R. B., Putra, M. S. Q., Syaputra, M. S. A. F., Achmad, S., & Sutoyo, R. (2023). Sentiment analysis for customer review: Case study of Traveloka. Procedia Computer Science, 216(2022), 682–690. https://doi.org/10.1016/j.procs.2022.12.184
Irawan, F. R., Jazuli, A., Khotimah, T., Studi, P., Informatika, T., Kudus, U. M., & Neighbor, K. (2022). Analisis Sentimen Terhadap Pengguna Gojek Menggunakan Metode K-Nearset Neighbors. JIKO (Jurnal Informatika Dan Komputer), 5(1), 62–68. https://doi.org/10.33387/jiko
Limbong, J. J. A., Sembiring, I., & Hartomo, K. D. (2022). Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Analysis Of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 9(2), 347–356. https://doi.org/10.25126/jtiik.202294960
Madjid, M. F., Ratnawati, D. E., & Rahayudi, B. (2023). Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 556–562.
Maharani, A. P., & Triayudi, A. (2022). Sentiment Analysis of Indonesian Digital Payment Customer Satisfaction Towards GOPAY, DANA, and ShopeePay Using Naïve Bayes and K-Nearest Neighbour Methods. Jurnal Media Informatika Budidarma, 6(1), 672. https://doi.org/10.30865/mib.v6i1.3545
Pati, G. K., & Umar, E. (2022). Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K- Nearest Neighbor. Jurnal Media Informatika Budidarma, 6, 2309–2315. https://doi.org/10.30865/mib.v6i4.4635
Pavitha, N., Pungliya, V., Raut, A., Bhonsle, R., Purohit, A., Patel, A., & Shashidhar, R. (2022). Movie recommendation and sentiment analysis using machine learning. Global Transitions Proceedings, 3(1), 279–284. https://doi.org/10.1016/j.gltp.2022.03.012
Pratama, R. P., & Tjahyanto, A. (2021). The influence of fake accounts on sentiment analysis related to COVID-19 in Indonesia. Procedia Computer Science, 197(2021), 143–150. https://doi.org/10.1016/j.procs.2021.12.128
Purba, M. (2023). Implementation Opinion Mining For Extraction Of Opinion Learning In University. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 694–699.
Putra, M. W. A., Susanti, Erlin, & Herwin. (2020). Analisis Sentimen Dompet Elektronik Pada Media Sosial Twitter Menggunakan Naïve Bayes Classifier. IT Journal Research and Development (ITJRD), 5(1), 72–86.
Rahat, A. M., Kahir, A., & Masum, A. K. M. (2020). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. Proceedings of the 2019 8th International Conference on System Modeling and Advancement in Research Trends, SMART 2019, 266–270. https://doi.org/10.1109/SMART46866.2019.9117512
Rahayu, A. N. S., Hermanto, T. I., & Nugroho, I. M. (2022). Sentiment Analysis Using K-Nearest Neighbor Based on Particle Swarm Optimization According To Sunscreen’S Reviews. Jurnal Teknik Informatika (Jutif), 3(6), 1639–1646. https://doi.org/10.20884/1.jutif.2022.3.6.425
Rivanie, T., Pebrianto, R., Hidayat, T., Bayhaqy, A., Gata, W., & Novitasari, H. B. (2021). Analisis Sentimen Terhadap Kinerja Menteri Kesehatan Indonesia Selama Pandemi Covid-19. Jurnal Informatika, 21(1), 1–13.
Simarmata, A. M., & Phanie, M. E. (2023). Sentiment Analysis On Twitter Posts About The Russia and Ukraine War With Long Short-Term Memory. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 789–797.
Singgalen, Y. A. (2022). Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 4(3). https://doi.org/10.47065/bits.v4i3.2486
Somantri, O., & Dairoh, D. (2019). Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(2), 191. https://doi.org/10.26418/jp.v5i2.32661
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Anita Wulan Sari, Teguh Iman Hermanto, Meriska Defriani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.