Modelling of Subject Scheduling Systems Using Hybrid Artificial Bee Colony Algorithm
DOI:
10.33395/sinkron.v7i3.12560Keywords:
Artificial Bee Colony Hybrid Algorithm, Metaheuristic, Modelling, SimulationAbstract
A common schedule problem found in colleges is the positioning of courses in a certain space and time. This placement process often encounters barriers that must be met so that there is no imbalance in the school schedule. One of the problems that often arise is the placement of class capacity that does not match the course requirements. In this study, the researchers used the Artificial Bee Colony Hybrid Algorithm (HABC) to construct course schedules efficiently at the college. The objective of the research was to develop a course scheduling system using the HABC algorithm by combining the Engineering of Artificial Bee Colony (ABC) and genetic algoritms, especially on the crossover process to better address the schedule problems. The research procedure used is to design and implement a course scheduling system using the Hybrid ABC algorithm. The results of the research demonstrate that the Hybrid ABC algorithm is effective in generating optimal course schedule schedules, in line with time limits, room needs, and lecturer requirements and can automate course schedule processes, saving time and resources, while ensuring optimal schedules.
Downloads
References
Akay, B., Karaboga, D., Gorkemli, B., & Kaya, E. (2021). A survey on the Artificial Bee Colony algorithm variants for binary, integer and mixed integer programming problems. Applied Soft Computing, 106, 107351. https://doi.org/10.1016/j.asoc.2021.107351
Ardiansyah, H., & Junianto, M. B. S. (2022). Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran. Jurnal Media Informatika Budidarma, 6(1), 329. https://doi.org/10.30865/mib.v6i1.3418
Banharnsakun, A. (2023). A new approach for solving the minimum vertex cover problem using artificial bee colony algorithm. Decision Analytics Journal, 6(January), 100175. https://doi.org/10.1016/j.dajour.2023.100175
Barbosa-p, A. P. (2022). Journal Pre-proof. https://doi.org/10.1016/j.ejor.2022.07.044
Bhaskoro, S. B., Bayu Aji, B., & Aminah, S. (2021). Sistem Penjadwalan Sidang Tugas Akhir menggunakan Algoritma Genetika. JTT (Jurnal Teknologi Terapan), 7(1), 27. https://doi.org/10.31884/jtt.v7i1.310
Boufflet, J., Arbaoui, T., Moukrim, A., Boufflet, J., Arbaoui, T., & Moukrim, A. (2022). The student scheduling problem at Université de Technologie de Compiègne To cite this version : HAL Id : hal-03347954 The Student Scheduling Problem at Universit ´ e de.
Christopher, W., & Ginting, R. (2019). Penjadwalan Produksi Menggunakan Algoritma Bee Colony Optimization. Talenta Conference Series …, 2(3). https://doi.org/10.32734/ee.v2i3.732
Comert, S. E., & Yazgan, H. R. (2023). A new approach based on hybrid ant colony optimization-artificial bee colony algorithm for multi-objective electric vehicle routing problems. Engineering Applications of Artificial Intelligence, 123(May), 106375. https://doi.org/10.1016/j.engappai.2023.106375
Fahlevi, H. W. (2018). Optimasi Penjadwalan Menggunakan Algoritma Artificial Bee Colony. 112. https://repository.unikom.ac.id/57957/
Fajrianto, A., Ilhamsyah, I., & Hidayati, R. (2022). Aplikasi Penjadwalan Mata Pelajaran Menggunakan Algoritma Artificial Bee Colony Berbasis Web. Jurnal Khatulistiwa Informatika, 10(1), 32–38. https://doi.org/10.31294/jki.v10i1.12550
Saǧ, T., & Kahramanli, H. (2017). Classification rule mining approach based on multiobjective optimization. IDAP 2017 - International Artificial Intelligence and Data Processing Symposium, 127(March), 109321. https://doi.org/10.1109/IDAP.2017.8090264
Sari, S. N., Kaban, R., Khaliq, A., & Andari, A. (2022). Sistem Penjadwalan Mata Pelajaran Sekolah Menggunakan Metode Hybrid Artificial Bee Colony (HABC). Jurnal Nasional Teknologi Komputer (JNASTEK), 2(1), 20–32. https://publikasi.hawari.id/index.php/jnastek/article/view/21
Xiang, W. li, Li, Y. zhen, He, R. chun, & An, M. qing. (2021). Artificial bee colony algorithm with a pure crossover operation for binary optimization. Computers and Industrial Engineering, 152(July 2020), 107011. https://doi.org/10.1016/j.cie.2020.107011
Xu, Y., & Wang, X. (2022). A hybrid integer programming and artificial bee colony algorithm for staff scheduling in call centers. Computers and Industrial Engineering, 171(200), 108312. https://doi.org/10.1016/j.cie.2022.108312
Zheng, Q. Q., Zhang, Y., He, L. J., & Tian, H. W. (2023). Discrete multi-objective artificial bee colony algorithm for green co-scheduling problem of ship lift and ship lock. Advanced Engineering Informatics, 55(January), 101897. https://doi.org/10.1016/j.aei.2023.101897
Zhou, B., & Zhao, Z. (2023). An adaptive artificial bee colony algorithm enhanced by Deep Q-Learning for milk-run vehicle scheduling problem based on supply hub. Knowledge-Based Systems, 264, 110367. https://doi.org/10.1016/j.knosys.2023.110367
Zhou, L., Liang, Z., Chou, C.-A., & Chaovalitwongse, W. A. (2020). Airline planning and scheduling: Models and solution methodologies. Frontiers of Engineering Management, 7(1), 1–26. https://doi.org/10.1007/s42524-020-0093-5
Zhu, Z., Chen, B., Chen, H., Qiu, S., Fan, C., Zhao, Y., Guo, R., Ai, C., Liu, Z., Zhao, Z., Fang, L., & Lu, X. (2022). Strategy evaluation and optimization with an artificial society towards a Pareto optimum. The Innovation, 3(5), 100274. https://doi.org/10.1016/j.xinn.2022.100274
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Sri Wahyuni Lingga, Sutarman, Open Darnius

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.