DEVELOPMENT OF INDEPENDENT TAEKWONDO TRAINING MACHINE LEARNING WITH 3D POSE MODEL MEDIAPIPE
DOI:
10.33395/sinkron.v8i3.12571Keywords:
Human Posture, Machine Learning, MediaPipe, Taekwondo, Three DimensionalAbstract
Taekwondo is a martial art that focuses on punching and kicking movements while upholding the values of discipline, ethics, and good behavior. Discipline is built with routine training to make someone proficient in taekwondo martial arts. Training cannot be carried out flexibly because it must be accompanied by a sabouem to know the correct taekwondo movements. Machine learning can be used as a solution for taekwondo movement recognition by building a learning machine model that recognizes the correct taekwondo movement. The MediaPipe framework has the advantage of being able to recognize human posture with 33 points or landmarks. The research was carried out by conducting a literature study, where similar research was found but only based on the values of the x and y axes. So a problem arises where the majority of taekwondo movements require the z axis to know the correct taekwondo movements. The research was conducted to add z-axis values and change calculations, which were adjusted to reconstruct a training data object in the form of an image into a three-dimensional shape. From this study, it was found that machine learning using the x, y, and z axes is much better for its use, especially when detecting taekwondo movements from different viewpoints from the training data. This research can be developed by enlarging the image dataset and packaging the model into a mobile application so that it can be used for taekwondo training up to taekwondo movement assessment.
Downloads
References
Bahukhandi, U., & Gupta, S. (2021). YOGA POSE DETECTION AND CLASSIFICATION USING MACHINE LEARNING TECHNIQUES. International Research Journal of Modernization in Engineering Technology and Science, 03(12), 186-191.
Bala, P. C., Eisenreich, B. R., Yoo, S. B., Hayden, B. Y., Park, H. S., & Zimmermann, J. (2020). Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio. Nature Communications, 11, 1-12. https://doi.org/10.1038/s41467-020-18441-5
Chung, J.-L., Ong, L.-Y., & Leow, M.-C. (2022). Comparative Analysis of Skeleton-Based Human Pose Estimation. Futute Internet, 14(12), 1-19. https://doi.org/10.3390/fi14120380
Dewantara, B. S., & Rhamadhaningrum, D. T. (2020). Detecting Multi-Pose Masked Face Using Adaptive Boosting and Cascade Classifier. International Electronics Symposium (IES), 436-441. https://doi.org/10.1109/IES50839.2020.9231934
Dinh, T. S., Luong, T. T., Do, H. S., Phan, V. N., Te, T. H., & Le, V. H. (2023). 3D HUMAN POSE ESTIMATION FROM SPORT VIDEOS USING MEDIAPIPE FRAMEWORK. TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO, 9, 183-193. https://doi.org/10.51453/2354-1431/2023/975
Kim, Y.-J., Baek, S.-H., Park, J.-B., Choi, S.-H., Lee, J.-D., & Nam, S.-S. (2021). The Psychosocial Effects of Taekwondo Training: A Meta-Analysis. International Journal of Environmental Research and Public Health, 18, 1-17. https://doi.org/10.3390/ijerph182111427
Kwon, Y., & Kim, D. (2022). Real-Time Workout Posture Correction using OpenCV and MediaPipe. Journal of the Korean Institute of Information Technology, 20, 199-208. http://dx.doi.org/10.14801/jkiit.2022.20.1.199
Muharram, N. A., & Puspodari. (2020). PENGEMBANGAN BUKU TEKNIK DASAR TAEKWONDO BERBASIS MOBILE LEARNING DAN MODEL TES KETERAMPILAN TENDANGAN AP HURIGI PADA ATLET TAEKWONDO KOTA KEDIRI. Jurnal Kejaora: Jurnal Kesehatan Jasmani dan Olah Raga, 5(2), 41-46. https://doi.org/10.36526/kejaora.v5i2.1006
Puspodari, & Muharram, N. A. (2020). BUKU S.O.P TEKNIK DASAR TAEKWONDO BERBASIS MOBILE LEARNING. Jombang: CV.NAKOMU.
Ramdhan, M. (2021). Metode Penelitian. Surabaya: Cipta Media Nusantara.
Rebala, G., Ravi, A., & Churiwala, S. (2019). An Introduction to Machine Learning. Gewerbestrasse: Springer Nature Switzerland.
Sarinastiti, W., Setyowati, A. D., & Basuki, A. (2022). ANALISIS DATASET VIDEO GERAKAN DASAR TAEKWONDO DENGAN MOTION CAPTURE. Jurnal Sistem Informasi Dan Bisnis Cerdas, 15, 45-53.
Sidana, K. (2022). REAL TIME YOGA POSE DETECTION USING DEEP LEARNING: A REVIEW. International Journal of Engineering Applied Sciences and Technology, 7(7), 61-65.
Suyudi, I., Sudadio, & Suherman. (2022). Pengenalan Bahasa Isyarat Indonesia menggunakan Mediapipe dengan Model Random Forest dan Multinomial Logistic Regression (Introduction to Indonesian Sign Language Using Mediapipe With Random Forest Models and Multinomial Logistic Regression). Jurnal Ilmu Siber dan Teknologi Digital (JISTED), 1, 65-80. https://doi.org/10.35912/jisted.v1i1.1899
Swain, D., Satapathy, S., Acharya, B., Shukla, M., Gerogiannis, V. C., Kanavos, A., & Giakovis, D. (2022). Deep Learning Models for Yoga Pose Monitoring. Algorithms, 15(11), 1-17. https://doi.org/10.3390/a15110403
Tanjaya, K. A., Naufal, M. F., & Arwoko, H. (2023). Pilates Pose Classification Using MediaPipe and Convolutional Neural Networks with Transfer Learning. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 9, 212-222. http://journal.uad.ac.id/index.php/JITEKI/article/view/25975
urgonguyen. (2022, Januari 3). GitHub - urgonguyen/yogatrainer. Retrieved Februari 16, 2023, from https://github.com/urgonguyen/yogatrainer
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Billy Cahyo Santoso, Handri Santoso, Julio Sandjaya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.