# Capacitated Vehicle Routing Problem In Optimization Of Waste Truck Routes Using The Particle Swarm Optimization Algorithm

## Authors

• Siti Rahmi Rambe Universitas Islam Negeri Sumatera Utara Medan
• Fibri Rakhmawati Universitas Islam Negeri Sumatera Utara Medan

## Keywords:

CVRP, Optimization, PSO, Transportation Routes.

## Abstract

In this research process, the aim is to determine the shortest route for transporting waste with the shortest or minimum total distance. In this case, what must be considered is the transportation of waste, regarding the distance between the location of the waste source to the landfills. The problem of waste transportation routes can be made in a mathematical method. The method used in waste transportation is the Capacitated Vehicle Routing Problem (CVRP) method. In solving the problem of transporting waste using the CVRP method, distance must be minimized or optimized using the Particle Swarm Optimization Algorithm. On the initial route of work area 1 there is the o-p-q-r-s-o route which has a total distance of 133.5 Km, in which there are several villages such as the Mambang Muda TPA - Belungihit Village - Aek Hitetoras Village - Brussel Plantation Village - Aek Tapa Village - Mambang Muda TPA. And after the latest garbage transportation route uses the PSO algorithm, the optimal distance is 132.5 Km with the o-s-q-r-p-o route where the village is Mambang Muda TPA - Aek Tapa Village - Aek Hitetoras Village - Brussels Plantation Village - Belungihit Village - Mambang Muda Landfill. In WK 2 there is an initial route o-p-q-r-s-o which has a total distance of 153.9 Km, in which the route has several TPA Mambang Muda villages - Marbau Village - Lobu Rampah Village - Simpang 4 Village - Pernantian Plantation Village - Mambang Muda TPA. And after the latest garbage transportation route uses the PSO algorithm, the optimal distance and route is 127.7 Km. In work area 3 with the initial route and distance of 150 and after using the PSO algorithm, the optimal route and distance is 137.1 Km. In work area 4 with a route and distance of 127.8 Km, the optimal route and distance using the PSO algorithm is 149.8 Km. Work area 4 has a route and initial distance of 157.8 Km and the optimal PSO route and distance is 149.8. The 5th working area has an initial distance of 180.3 and the PSO route is 134.3 Km. The working area of ​​the 5 initial routes is 152.4 Km and the PSO route is 152.4.

GS Cited Analysis

## References

Afrianita, S. (2011). Algoritma Multiple Ant Colony System pada Vehicle Routing Problem with Time Windows. Skripsi Jurusan Matematika Fakultas Matematika Dan ….

Amin, R. (2020). Implementasi Restfull Api Menggunakan Arsitektur Microservice Untuk Manajemen Tugas Kuliah (Studi Kasus : Mahasiswa STMIK AKAKOM). STMIK AKAKOM.

Aref, S. (2017). A Green Perspective on Capacitated Time-dependent Vehicle Routing Problem with Time Windows Iman Kazemian. 2(1).

B, B. & A. W. (2021). Analisis Kebutuhan Ruang Parkir ( Studi Kasus : Area Parkir ICT Universitas Teknokrat Indonesia). Jurnal Teknik Sipil, 2(2), 67–77.

Badan Statistik Kabupaten Labuhan Batu Utara. (2019).

Bayu Teguh Ujianti, B. M. (2018). Optimasi Penjualan Rumah Dan Pemanfaatan Lahan Pada Perumahan Permata Jingga. Journal Pawon, 7(2), 78–85.

Cahyaningsih, W. K., Sari, R., & Hernawati, K. (2015). Penyelesaian Capacitated Vehicle Routing Problem (CVRP) Menggunakan Algoritma Sweep Untuk Optimasi Rute Distribusi Surat Kabar Kedaulatan Rakyat. Seminar Nasional Matematika Dan Pendidikan Matematika UNY 2015, 1–8.

Engelbrecht, S. (2006). Motivation and Burnout in Human Service Work The Case of Midwifery in Denmark. National Institute of Occupational Health, 280.

Hafidz, D. A. (2021). Pengembanga Sistem Informasi Edukasi Dan Pemasaran Hasil Pertanian di Tulang Bawang.

Hannan, Akhtar, begum, hussain, scavino. (2018). Capacitated Vehicle-Routing Problem Model For Scheduled Solid Wasted Collection and Route Optimization Using PSO Algorithm. Waste Management, 1(7), 31–41.

Hartono, Puspita, P. (2018). LINGO-based on robust counterpart open capacitated vehicle routing problem (RC-OCVRP) model of waste transportation in Palembang. International Conference on Information and Communications Technology, 429–435.

Mappa, T. M., & Sudaryanto. (2019). Optimasi Rute Truk Pengangkut Sampah Di Kota Depok. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 226–239. https://doi.org/10.35760/tr.2019.v24i3.2399

Naseem & Razzak, I. (2020). Transformer Based Deep Intelligent Contextual Embedding For Twitter Sentimenent Analisi. Future Generation Coumputer System.

Pratama, R. A., Utomo, P. H., & Wibowo, S. (2022). Comparison of VRP Solutions for Aqila Book Distribution in Surakarta Using the Tabu Search Algorithm and the ACO Algorithm (Perbandingan Solusi CVRP pada Distibusi Buku Aqila di Surakarta Menggunakan Algoritme Tabu Search dan Algoritme ACO). Jurnal Riset Dan Aplikasi Matematika, 6(1), 13–22.

Putra, A. M. (2021). Underground Support System Determination : A Literature Review. International Journal Of Research, 1, 55–68.

Sateria, A., Dwi Saputra, I., & Dharta, Y. (2018). Penggunaan Metode PSO Pada Optimasi Multirespon Gaya Tekan dan Momen Torsi Penggurdian Material Komposit GFRP Yang Ditumpuk Dengan Material Stainless Steel. Jurnal Manutech, 1–7.

Sistem, R., Permatasari, I., Ramdhani, L. S., Mardi, Y., Kusumawati, D., Winarno, W. W., Arief, M. R., Sugara, B., Widyatmoko, D., Prakoso, B. S., Saputro, D. M., Asmaul Husnah Nasrullah, Evicienna, H. A., Baru, C. M., Kasus, S., Darmajaya, I. B. I., Nurajijah, N., Riana, D., Maesaroh, S., … Sulistiyanto. (2018). Penerapan C4 . 5 Berbasis Particle Swarm Optimization ( PSO ) dalam Memprediksi Siswa Lolos Seleksi Perguruan Tinggi. Techno Nusa Mandiri, 7(2), 162–170. eprints.dinus.ac.id/16925/1/jurnal_16115.pdf%0Ahttps://www.ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/908

Tanjung, L. S., Hadiguna, R. A., & B.A, A. H. (2021). Model Mixed Integer Linier Programming Untuk Perencanaan Pengangkutan Sampah Di Kota Pekanbaru. Jurnal Daya Saing, 7(3), 293–300. https://doi.org/10.35446/dayasaing.v7i3.713

Xia, X., Gui, L., Yu, F., Wu, H., Wei, B., Zhang, Y. L., & Zhan, Z. H. (2020). Triple Archives Particle Swarm Optimization. IEEE Transactions on Cybernetics, 50(12), 4862–4875. https://doi.org/10.1109/TCYB.2019.2943928