Classification of Public Sentiment on Fuel Price Increases Using CNN

Authors

  • Anak Agung Istri Arinta Maharani Fakultas Informatika, Universitas Telkom, Bandung, Indonesia
  • Sri Suryani Prasetiyowati Fakultas Informatika, Universitas Telkom, Bandung, Indonesia
  • Yuliant Sibaroni Fakultas Informatika, Universitas Telkom, Bandung, Indonesia

DOI:

10.33395/sinkron.v8i3.12609

Keywords:

Sentiment Classification, Fuel up, CNN, SMOTE, K-Fold Cross Validation

Abstract

The government's policy of changing fuel prices is carried out every year. The public gave responses to this policy categorized as positive, negative, or neutral sentiments. The community's response was conveyed through tweets on the Twitter application. Based on the public's response to the policy, sentiment classification can be done using data mining classification techniques. Some research has been carried out on classification techniques using deep learning and machine learning methods. In general, deep learning methods get better results, and this research will be approached using the CNN method. The system stages start from crawling data, labeling, and preprocessing, which consists of cleaning, case folding, tokenization, normalization, removing stopwords and stemming, classification using CNN, and evaluation using 10-Cross Validation. The dataset used is 17.270. The results show that the developed classification system is relatively high, with the highest accuracy of 87%, 93% recall, 93% precision, and 90% F1 score. An in-depth analysis of the classification results and an understanding of sentiment toward rising fuel prices can also provide valuable insights.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Anak Agung Istri Arinta Maharani, Fakultas Informatika, Universitas Telkom, Bandung, Indonesia

 

 

Sri Suryani Prasetiyowati, Fakultas Informatika, Universitas Telkom, Bandung, Indonesia

 

 

Yuliant Sibaroni, Fakultas Informatika, Universitas Telkom, Bandung, Indonesia

 

 

References

Alhakiem, H. R., & Setiawan, E. B. (2022). Aspect-Bas1ed Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 840–846. https://doi.org/10.29207/resti.v6i5.4429

Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1). https://doi.org/10.18196/st.211211

dpr.go.id. (2022, September 19). Nur Azizah: Kenaikan Harga BBM Memberatkan Rakyat. Dpr.Go.Id.

Fonda, H., Irawan, Y., Febriani, A., Informatika, S., & Pekanbaru, H. T. (2020). KLASIFIKASI BATIK RIAU DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORKS (CNN) 1 2 3 Email : 1 2 3. In JIK (Vol. 9, Issue 1). http://jik.htp.ac.id

Irawan, F. A., & Rochmah, D. A. (2022). Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19. JURNAL INFORMATIKA, 9(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding Convolutional Neural Networks for Text Classification.

Kumar, R., & Garg, S. (2020). Aspect-Based Sentiment Analysis Using Deep Learning Convolutional Neural Network. In Advances in Intelligent Systems and Computing (Vol. 933, pp. 43–52). Springer Verlag. https://doi.org/10.1007/978-981-13-7166-0_5

Lee, H. M., & Sibaroni, Y. (2023). Comparison of IndoBERTweet and Support Vector Machine on Sentiment Analysis of Racing Circuit Construction in Indonesia. JURNAL MEDIA INFORMATIKA BUDIDARMA , 7(1), 99–106. https://doi.org/10.30865/mib.v7i1.5380

Listyarini, S. N., & Anggoro, D. A. (2021). Analisis Sentimen Pilkada di Tengah Pandemi Covid-19 Menggunakan Convolution Neural Network (CNN). Jurnal Pendidikan Dan Teknologi Indonesia, 1(7), 261–268. https://doi.org/10.52436/1.jpti.60

Munawar, Z., Putri, N. I., & Musadad, D. Z. (2020). MENINGKATKAN REKOMENDASI MENGGUNAKAN ALGORITMA PERBEDAAN TOPIK. Jurnal Sistem Informasi, J-SIKA , 1(2).

Nawangsih, I., Melani, I., & Fauziah, S. (2021). PREDIKSI PENGANGKATAN KARYAWAN DENGAN METODE ALGORITMA C5.0 (STUDI KASUS PT. MATARAM CAKRA BUANA AGUNG ). Jurnal Pelita Teknologi, 16(2), 24–33.

Nikmatul Kasanah, A., Muladi, & Pujianto, U. (2019). Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN KNN. Jurnal RESTI, 3(2), 196–201.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).

Novitasari, F., & Dwifebri Purbolaksono, M. (2021). Sentiment Analysis Aspect Level on Beauty Product Reviews Using Chi-Square and Naïve Bayes. JOURNAL OF DATA SCIENCE AND ITS APPLICATIONS, 4(1), 18–030. https://doi.org/10.34818/JDSA.2021.4.72

Ramadhan, A. I., & Setiawan, E. B. (2023). Aspect-based Sentiment Analysis on Social Media Using Convolutional Neural Network (CNN) Method. Building of Informatics, Technology and Science (BITS), 4(4). https://doi.org/10.47065/bits.v4i4.3103

Rodani, A. (2022, September 12). Menyikapi Kenaikan Harga BBM secara Bijak. Djkn.Kemenkeu.Go.Id.

Sihombing, J. (2022, September 15). Kenaikan Harga BBM : Jahat atau Sepakat..??? Djkn.Kemenkeu.Go.Id.

Siringoringo, R. (2018). KLASIFIKASI DATA TIDAK SEIMBANG MENGGUNAKAN ALGORITMA SMOTE DAN k-NEAREST NEIGHBOR (Vol. 3, Issue 1).

Wardani, W., Suriana, Arfah, S., Zulaili, & Lubis, P. (2022). Dampak kenaikan Bahan Bakar Minyak (BBM) Terhadap Inflasidan Implikasinya Terhadap Makroekonomidi Indonesia. AFoSJ-LAS, 2(3), 63–70. https://j-las.lemkomindo.org/index.php/AFoSJ-LAS/index

Yuliska, Hidayatul Qudsi, D., Hakim Lubis, J., Umam Syaliman, K., & Fadilah Najwa, N. (2021). ANALISIS SENTIMEN PADA DATA SARAN MAHASISWA TERHADAP KINERJA DEPARTEMEN DI PERGURUAN TINGGI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK) , 8(5), 1067–1076. https://doi.org/10.25126/jtiik.202184842

Downloads


Crossmark Updates

How to Cite

Maharani, A. A. I. A. ., Prasetiyowati, S. S. ., & Sibaroni, Y. . (2023). Classification of Public Sentiment on Fuel Price Increases Using CNN. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1630-1637. https://doi.org/10.33395/sinkron.v8i3.12609