Classification of Public Sentiment on Fuel Price Increases Using CNN
DOI:
10.33395/sinkron.v8i3.12609Keywords:
Sentiment Classification, Fuel up, CNN, SMOTE, K-Fold Cross ValidationAbstract
The government's policy of changing fuel prices is carried out every year. The public gave responses to this policy categorized as positive, negative, or neutral sentiments. The community's response was conveyed through tweets on the Twitter application. Based on the public's response to the policy, sentiment classification can be done using data mining classification techniques. Some research has been carried out on classification techniques using deep learning and machine learning methods. In general, deep learning methods get better results, and this research will be approached using the CNN method. The system stages start from crawling data, labeling, and preprocessing, which consists of cleaning, case folding, tokenization, normalization, removing stopwords and stemming, classification using CNN, and evaluation using 10-Cross Validation. The dataset used is 17.270. The results show that the developed classification system is relatively high, with the highest accuracy of 87%, 93% recall, 93% precision, and 90% F1 score. An in-depth analysis of the classification results and an understanding of sentiment toward rising fuel prices can also provide valuable insights.
Downloads
References
Alhakiem, H. R., & Setiawan, E. B. (2022). Aspect-Bas1ed Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 840–846. https://doi.org/10.29207/resti.v6i5.4429
Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1). https://doi.org/10.18196/st.211211
dpr.go.id. (2022, September 19). Nur Azizah: Kenaikan Harga BBM Memberatkan Rakyat. Dpr.Go.Id.
Fonda, H., Irawan, Y., Febriani, A., Informatika, S., & Pekanbaru, H. T. (2020). KLASIFIKASI BATIK RIAU DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORKS (CNN) 1 2 3 Email : 1 2 3. In JIK (Vol. 9, Issue 1). http://jik.htp.ac.id
Irawan, F. A., & Rochmah, D. A. (2022). Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19. JURNAL INFORMATIKA, 9(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji
Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding Convolutional Neural Networks for Text Classification.
Kumar, R., & Garg, S. (2020). Aspect-Based Sentiment Analysis Using Deep Learning Convolutional Neural Network. In Advances in Intelligent Systems and Computing (Vol. 933, pp. 43–52). Springer Verlag. https://doi.org/10.1007/978-981-13-7166-0_5
Lee, H. M., & Sibaroni, Y. (2023). Comparison of IndoBERTweet and Support Vector Machine on Sentiment Analysis of Racing Circuit Construction in Indonesia. JURNAL MEDIA INFORMATIKA BUDIDARMA , 7(1), 99–106. https://doi.org/10.30865/mib.v7i1.5380
Listyarini, S. N., & Anggoro, D. A. (2021). Analisis Sentimen Pilkada di Tengah Pandemi Covid-19 Menggunakan Convolution Neural Network (CNN). Jurnal Pendidikan Dan Teknologi Indonesia, 1(7), 261–268. https://doi.org/10.52436/1.jpti.60
Munawar, Z., Putri, N. I., & Musadad, D. Z. (2020). MENINGKATKAN REKOMENDASI MENGGUNAKAN ALGORITMA PERBEDAAN TOPIK. Jurnal Sistem Informasi, J-SIKA , 1(2).
Nawangsih, I., Melani, I., & Fauziah, S. (2021). PREDIKSI PENGANGKATAN KARYAWAN DENGAN METODE ALGORITMA C5.0 (STUDI KASUS PT. MATARAM CAKRA BUANA AGUNG ). Jurnal Pelita Teknologi, 16(2), 24–33.
Nikmatul Kasanah, A., Muladi, & Pujianto, U. (2019). Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN KNN. Jurnal RESTI, 3(2), 196–201.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).
Novitasari, F., & Dwifebri Purbolaksono, M. (2021). Sentiment Analysis Aspect Level on Beauty Product Reviews Using Chi-Square and Naïve Bayes. JOURNAL OF DATA SCIENCE AND ITS APPLICATIONS, 4(1), 18–030. https://doi.org/10.34818/JDSA.2021.4.72
Ramadhan, A. I., & Setiawan, E. B. (2023). Aspect-based Sentiment Analysis on Social Media Using Convolutional Neural Network (CNN) Method. Building of Informatics, Technology and Science (BITS), 4(4). https://doi.org/10.47065/bits.v4i4.3103
Rodani, A. (2022, September 12). Menyikapi Kenaikan Harga BBM secara Bijak. Djkn.Kemenkeu.Go.Id.
Sihombing, J. (2022, September 15). Kenaikan Harga BBM : Jahat atau Sepakat..??? Djkn.Kemenkeu.Go.Id.
Siringoringo, R. (2018). KLASIFIKASI DATA TIDAK SEIMBANG MENGGUNAKAN ALGORITMA SMOTE DAN k-NEAREST NEIGHBOR (Vol. 3, Issue 1).
Wardani, W., Suriana, Arfah, S., Zulaili, & Lubis, P. (2022). Dampak kenaikan Bahan Bakar Minyak (BBM) Terhadap Inflasidan Implikasinya Terhadap Makroekonomidi Indonesia. AFoSJ-LAS, 2(3), 63–70. https://j-las.lemkomindo.org/index.php/AFoSJ-LAS/index
Yuliska, Hidayatul Qudsi, D., Hakim Lubis, J., Umam Syaliman, K., & Fadilah Najwa, N. (2021). ANALISIS SENTIMEN PADA DATA SARAN MAHASISWA TERHADAP KINERJA DEPARTEMEN DI PERGURUAN TINGGI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK) , 8(5), 1067–1076. https://doi.org/10.25126/jtiik.202184842
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Anak Agung Istri Arinta Maharani, Sri Suryani Prasetiyowati, Yuliant Sibaroni
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.