Design of Batak Toba Script Recognition System Using Convolutional Neural Network Algorithm
DOI:
10.33395/sinkron.v8i3.12617Keywords:
Batak Toba Script, Convolutional Neural Network, Deep Learning, Recognition, HandwritingAbstract
Indonesia is one of the countries with diversity and abundant cultural wealth, one of which is the Batak Toba script as one of the wealth originating from the Batak tribe. However, the existence of the Batak Toba script is decreasing along with the rapid development of the times, due to the lack of interest of the younger generation and public awareness in preserving the Batak Toba script. From these problems, the author conducted research to create a model of introducing the Batak Toba script, as an effort to preserve the Batak Toba script which is one of Indonesia's cultural wealth. The purpose of this research is to create a Batak Toba script recognition model using a digital handwriting dataset, and has an output in the form of visual text and with audio pronunciation of each script. The method used in this research is the Convolutional Neural Network algorithm combined with RMSprop optimizer. Convolutional Neural Network is an algorithm that is one of the deep learning methods that has good performance on image data. The results of this study incised a recognition model with a relatively high level of accuracy, which is equal to 99,54% which was tested on the Batak Toba script dataset in the form of digital handwriting. Through this research, the model using the Convolutional Neural Network algorithm used in this research is able to produce good results for recognizing the Batak Toba script in the form of handwriting.
Downloads
References
Ahsan, Md Manjurul, Tasfiq E. Alam, Theodore Trafalis, and Pedro Huebner. 2020. “Deep MLP-CNN Model Using Mixed-Data to Distinguish between COVID-19 and Non-COVID-19 Patients.” Symmetry 12(9). doi: 10.3390/sym12091526.
Dharma, Arie Satia, Sulastri Tambunan, and Pangondion K. Naibaho. 2022. “Deteksi Objek Aksara Batak Toba Menggunakan Faster R-CNN Dan YoloV3.”
Fu’adah, Yunendah Nur, Nk Caecar Pratiwi, Muhammad Adnan Pramudito, and Nur Ibrahim. 2020. “Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System.” IOP Conference Series: Materials Science and Engineering 982(1). doi: 10.1088/1757-899X/982/1/012005.
Joichiro. 2022. “【ImageDataGenerator】Data Augmentation Of Training Images In Keras.” Retrieved June 28, 2023 (https://laid-back-scientist.com/en/image-data-generator).
Khunafa Qudsi, Nahila, Rosa Andrie Asmara, Arie Rachmad Syulistyo, Program Studi, Teknik Informatika, Jurusan Teknologi Informasi, and Politeknik Negeri Malang. 2019. “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN).” Seminar Informatika Aplikatif Polinema (SIAP) 48–53.
Kumar, Avinash, Sobhangi Sarkar, and Chittaranjan Pradhan. 2020. “Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers.” Studies in Big Data 68(April):211–30. doi: 10.1007/978-3-030-33966-1_11.
Kurniawan, Rian, Yessi Mulyani, Puput Budi Wintoro, and Muhamad Komarudin. 2023. “IMPLEMENTASI ARSITEKTUR XCEPTION PADA MODEL MACHINE LEARNING KLASIFIKASI SAMPAH.” JITET (Jurnal Informatika Dan Teknik Elektro Terapan) 11(2):233–36. doi: http://dx.doi.org/10.23960/jitet.v11i2.3034.
Lorentius, Christopher Allbert, Rudy Adipranata, and Alvin Tjondrowiguno. 2020. “Pengenalan Aksara Jawa Dengan Menggunakan Metode Convolutional Neural Network.” E-Proceeding of Engineering 7(1):2558–67.
Nugroho, Pulung Adi, Indah Fenriana, and Rudy Arijanto. 2020. “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia.” Algor 2(1):12–21.
Pangestu, Muftah Afrizal, and Hendra Bunyamin. 2018. “Analisis Performa Dan Pengembangan Sistem Deteksi Ras Anjing Pada Gambar Dengan Menggunakan Pre-Trained CNN Model.” Jurnal Teknik Informatika Dan Sistem Informasi 4:337–44.
Pasaribu, Novie Theresia Br., and Meilan Jimmy Hasugian. 2015. “Pengenalan Tulisan Tangan Ina Ni Surat Aksara Batak Toba Pengenalan Tulisan Tangan Ina Ni Surat Aksara Batak Toba Prosiding Seminar Nasional Teknologi Terapan SV UGM 2015.” Prosiding Seminar Nasional Teknologi Terapan SV UGM 2015 (August):21–24.
Pratama, Yohanssen, Sarah Try Novelitha Nainggolan, Desy Isabel Nadya, and Nova Yanti Naipospos. 2023. “One-Shot Learning Batak Toba Character Recognition Using Siamese Neural Network.” Telkomnika (Telecommunication Computing Electronics and Control) 21(3):600–612. doi: 10.12928/TELKOMNIKA.v21i3.24927.
Rahman, Hamid, and Sukemi. 2019. “Noise Removal Pada Citra Digital Menggunakan Metode Gaussian Filter.” Prosiding Annual Research Seminar 5(1):978–79.
Reddy, R. Vijava Kumar, Dr. B. Srinivasa Rao, and K. Prudvi Raju. 2019. “Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization.” Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, ICICCS 2018 (June):45–51. doi: 10.1109/ICCONS.2018.8662969.
Rizki, Yoze, and Mochamad Hariadi. 2019. “Pembangkitan Cahaya Virtual Dinamis Pada Augmented Reality Menggunakan Canny Edge Detection, Contour Finding Dan Unity Light Renderer.” Jurnal Fasilkom 8(1):334–41. doi: 10.37859/jf.v8i1.1198.
Roza, Ellya. 2017. “Aksara Arab-Melayu Di Nusantara Dan Sumbangsihnya Dalam Pengembangan Khazanah Intelektual.” Tsaqafah 13(1):177. doi: 10.21111/tsaqafah.v13i1.982.
Sitorus, Johanes. 2015. “Perancangan Aplikasi Pengenalan Pola Huruf Aksara Batak Toba Menerapkan Metode Direction Feature Extraction ( DFE ).” JURIKOM (Jurnal Riset Komputer) 2(6):48–55.
Tambunan, Frinto. 2019. “Pengenalan Aksara Batak Dengan Metode Perceptron.” Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika) 4(1):160. doi: 10.30645/jurasik.v4i1.129.
Tarigan, Yuni Franciska, B. Herawan Hayadi, and Asyahri Hadi Nasyuha. 2022. “Implementasi Jaringan Saraf Tiruan Pengenalan Pola Aksara Batak Simalungun Menggunakan Kohonen Self Organizing Map.” Journal of Computer System and Informatics (JoSYC) 3(4):392–404. doi: 10.47065/josyc.v3i4.1991.
Utari, Lis, and Ammar Zulfikar. 2023. “Penerapan Convolutional Neural Networks Menggunakan Edge Detection Untuk Identifikasi Motif Jenis Batik.” TeknoIS : Jurnal Ilmiah Teknologi Informasi Dan Sains 13(1):110–23. doi: 10.36350/jbs.v13i1.184.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Steven Willian, Theresia Herlina Rochadiani, Thamrin Sofian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.