Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining

Authors

  • Sabdi Albi Hasibuan Universitas Labuhanbatu
  • Volvo Sihombing Universitas Labuhanbatu, Indonesia
  • Fitri Aini Nasution Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v8i3.12634

Keywords:

Classification, Data Meaning, Lazada App, Neural Network, Satisfaction Level

Abstract

Data mining is a process that is carried out to extract data into information. There are several models that can be done in data mining, such as classification, association, clustering, regression. But in this study will be carried out using a classification model. Research conducted on the level of public satisfaction for shopping on the Lazada application. This study aims to determine the level of public satisfaction on the Lazada application. This research was also conducted because the goods sold on the Lazada application are quite cheap and when compared to the original price there is a considerable difference. Therefore, research was conducted on the level of community satisfaction on the Lazada application. This research will be conducted on data mining with a classification model and using the neural network method. The results obtained from the data mining process using 100 community data, the results obtained are 81 community data (representation obtained by 81%) of people who are satisfied shopping on the lazada application and by 19 (representation obtained by 19%) people who are not satisfied shop on the Lazada app. From these results, many people are satisfied with shopping on the Lazada app. So from the results of this classification it can be concluded that the goods sold on the Lazada application are good goods.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Sabdi Albi Hasibuan, Universitas Labuhanbatu

 

 

Volvo Sihombing, Universitas Labuhanbatu, Indonesia

 

 

Fitri Aini Nasution, Universitas Labuhanbatu, Indonesia

 

 

References

Aguni, L., Chabaa, S., Ibnyaich, S., & Zeroual, A. (2021). Predicting the notch band frequency of an ultra-wideband antenna using artificial neural networks. Telkomnika (Telecommunication Computing Electronics and Control), 19(1), 1–8. https://doi.org/10.12928/TELKOMNIKA.V19I1.15912

Agustina, N., Adrian, A., & Hermawati, M. (2021). Implementasi Algoritma Naïve Bayes Classifier untuk Mendeteksi Berita Palsu pada Sosial Media. Faktor Exacta, 14(4), 1979–276. https://doi.org/10.30998/faktorexacta.v14i4.11259

Al-Rasheed, A. (2021). Identification of important features and data mining classification techniques in predicting employee absenteeism at work. International Journal of Electrical and Computer Engineering, 11(5), 4587–4596. https://doi.org/10.11591/ijece.v11i5.pp4587-4596

Almasinejad, P., Golabpour, A., Ahouz, F., Meybodi, M. R. M., Mirzaie, K., Khosravi, A., … Bastani, A. (2022). Predicting the status of COVID-19 active cases using a neural network time series. International Journal of Electrical and Computer Engineering, 12(3), 3104–3117. https://doi.org/10.11591/ijece.v12i3.pp3104-3117

Baker, S. A., Mohammed, H. H., & Aldabagh, H. A. (2020). Improving face recognition by artificial neural network using principal component analysis. Telkomnika (Telecommunication Computing Electronics and Control), 18(6), 3357–3364. https://doi.org/10.12928/TELKOMNIKA.v18i6.16335

Cases, C. M. P., Rapliza, A. A., Munsayac, F. E. T., Bugtai, N. T., Billiones, R. K. D., & Baldovino, R. G. (2019). Quality assessment and prediction of philippine mangoes: A convolutional neural network approach. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2128–2133. https://doi.org/10.18517/ijaseit.9.6.9951

Chai, S. S., Wong, W. K., Goh, K. L., Wang, H. H., & Wang, Y. C. (2019). Radial basis function (RBF) neural network: Effect of hidden neuron number, training data size, and input variables on rainfall intensity forecasting. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 1921–1926. https://doi.org/10.18517/ijaseit.9.6.10239

Firdaus, A. A., Yunardi, R. T., Agustin, E. I., Putri, T. E., & Anggriawan, D. O. (2020). Short-term photovoltaics power forecasting using Jordan recurrent neural network in Surabaya. Telkomnika (Telecommunication Computing Electronics and Control), 18(2), 1089–1094. https://doi.org/10.12928/TELKOMNIKA.v18i2.14816

Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447–459. https://doi.org/10.11591/ijeecs.v9.i2.pp447-459

Indrayuni, E. (2019). Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes. Jurnal Khatulistiwa Informatika, 7(1), 29–36. https://doi.org/10.31294/jki.v7i1.1

Khrisat, M. S., & Alqadi, Z. A. (2022). Solving multiple linear regression problem using artificial neural network. International Journal of Electrical and Computer Engineering, 12(1), 770–775. https://doi.org/10.11591/ijece.v12i1.pp770-775

Negara, A. B. P., Muhardi, H., & Putri, I. M. (2020). Analisis Sentimen Maskapai Penerbangan Menggunakan Metode Naive Bayes dan Seleksi Fitur Information Gain. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(3), 599. https://doi.org/10.25126/jtiik.2020711947

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. Retrieved from http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

Patil, R., & Tamane, S. (2018). A comparative analysis on the evaluation of classification algorithms in the prediction of diabetes. International Journal of Electrical and Computer Engineering, 8(5), 3966–3975. https://doi.org/10.11591/ijece.v8i5.pp3966-3975

Pour, E. S., Esmaeili, M., & Romoozi, M. (2022). Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification. International Journal of Electrical and Computer Engineering, 12(6), 6397–6409. https://doi.org/10.11591/ijece.v12i6.pp6397-6409

Priatna, M. A., & Djamal, E. C. (2020). Precipitation prediction using recurrent neural networks and long short-term memory. Telkomnika (Telecommunication Computing Electronics and Control), 18(5), 2525–2532. https://doi.org/10.12928/TELKOMNIKA.V18I5.14887

Rustam, Z., Yuda, R. P., Alatas, H., & Aroef, C. (2020). Pulmonary rontgen classification to detect pneumonia disease using convolutional neural networks. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1522–1528. https://doi.org/10.12928/TELKOMNIKA.v18i3.14839

Toradmalle, D., Muthukuru, J., & Sathyanarayana, B. (2019). Certificateless and provably-secure digital signature scheme based on elliptic curve. International Journal of Electrical and Computer Engineering, 9(4), 3228–3231. https://doi.org/10.11591/ijece.v9i4.ppxx-xx

Uçar, T., & Karahoca, A. (2021). Benchmarking data mining approaches for traveler segmentation. International Journal of Electrical and Computer Engineering, 11(1), 409–415. https://doi.org/10.11591/ijece.v11i1.pp409-415

Watratan, A. F., B, A. P., Moeis, D., Informasi, S., & Makassar, S. P. (2020). Implementation of the Naive Bayes Algorithm to Predict the Spread of Covid-19 in Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7–14.

Yun, H. (2021). Prediction model of algal blooms using logistic regression and confusion matrix. International Journal of Electrical and Computer Engineering, 11(3), 2407–2413. https://doi.org/10.11591/ijece.v11i3.pp2407-2413

Downloads


Crossmark Updates

How to Cite

Hasibuan, S. A. ., Sihombing, V. ., & Nasution, F. A. . (2023). Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1724-1735. https://doi.org/10.33395/sinkron.v8i3.12634

Most read articles by the same author(s)

1 2 > >>