Improved YOLOv5 with Backbone Replacement to MobileNet V3s for School Attribute Detection


  • Ardanu Dhuhri Nugroho Universitas Amikom Purwokerto, Indonesia
  • Wiga Maulana Baihaqi Universitas Amikom Purwokerto, Indonesia




Backbone Replacement, Computer Vision, Deep Learning, MobileNetV3s, School Attribute, YOLOv5


School attributes are a series of clothes and accessories that must be worn by students in the school environment. The implementation of this rule aims to create discipline in students. However, in practice, not all rules can be implemented properly because there are still students who violate these rules. One of the rules applied at school is the use of complete attributes. Currently, attribute checks in schools are done manually or through teacher supervision. However, this takes more time, is prone to errors, and is inefficient due to the large number of students being checked. This study proposes an improved YOLOv5 architecture with the replacement of the backbone to MobileNetV3s to detect school attributes. This method uses deep learning and the YOLOv5 algorithm to detect in real time the use of school attributes by students. In this study, the experimental results show that the enhanced YOLOv5 with MobileNetV3s has higher accuracy compared to the original YOLOv5. In addition, the improved model is more efficient in memory usage and weight file size. With an accuracy result of 0.912 on mAP50 and a weight size of about 90 MB and a memory usage of <7 GB, it shows the potential of replacing the backbone in this technology in overcoming attribute detection challenges in schools and can be applied in other cases. However, further research is needed to generalize these results to other problems. This research also shows that backbone replacement in YOLOv5 can affect the accuracy of the model.

GS Cited Analysis


Download data is not yet available.


Audina, D., Soleh, D. A., & Sumantri, M. S. (2022). Pendidikan Karakter Cinta Tanah Air dan Kedisiplinan Dalam Kegiatan Upacara Bendera di Sekolah Dasar DKI Jakarta. EduStream: Jurnal Pendidikan Dasar, 5(1), 60–68.

Benjumea, A., Teeti, I., Cuzzolin, F., & Bradley, A. (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles.

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection.

Gelar Guntara, R. (2023). Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(1), 55–60.

Hastomo, W., & dan Sudjiran, S. (2021). Convolution Neural Network Arsitektur Mobilenet-V2 Untuk Mendeteksi Tumor Otak. Seminar Nasional Teknologi Informasi Dan Komunikasi STI&K (SeNTIK), 5(1), 17–21.

Horvat, M., & Gledec, G. (2022). A comparative study of YOLOv5 models performance for image localization and classification. 33rd Central European Conference on Information and Intelligent Systems, September, 349–356.

Howard, A., Wang, W., Chu, G., Chen, L., Chen, B., & Tan, M. (2019). Searching for MobileNetV3 Accuracy vs MADDs vs model size. International Conference on Computer Vision, 1314–1324.

Iskandar Mulyana, D., & Rofik, M. A. (2022). Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5. Jurnal Pendidikan Tambusai, 6(3), 13971–13982.

Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, Hogan, A., Lorenzomammana, Tkianai, YxNONG, AlexWang1900, Diaconu, L., Marc, Wanghaoyang0106, Ml5ah, Doug, Hatovix, Poznanski, J., … Yzchen. (2020). ultralytics/yolov5: v3.0. Zenodo.

Kim, J. A., Sung, J. Y., & Park, S. H. (2020). Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition. 2020 IEEE International Conference on Consumer Electronics - Asia, ICCE-Asia 2020, 8–11.

Komah, H., & Budjang, G. (2017). Pengendalian Sosial Oleh Guru Dalam Mengatasi Khulafaur Rasyidin The title of this thesis is social restraint by the teacher in overcoming school attribute infraction in MA Khulafaur Rasyidin. The research problem is how social restraint by the teacher o. 1–9.

Prayitna, D. H., Djajadi, A., Teknologi, M., Universitas, I., Alamat, P., Business, S., Sangereng, C., Dua, K., & Sekolah, A. (2022). Perancangan Prototype Deteksi Kelengkapan. Jurnal Inovasi Informatika, 7(1), 57–69.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788.

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 6517–6525.

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

Setiawan, W. (2020). Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus. Jurnal Simantec, 7(2), 48–53.

SUYUTI, M. (2023). Pengembangan Model Klasifikasi Mata Tertutup dan Terbuka Dalam Identifikasi Kelelahan Menggunakan Arsitektur Mobile CNN.


Crossmark Updates

How to Cite

Nugroho, A. D. ., & Wiga Maulana Baihaqi. (2023). Improved YOLOv5 with Backbone Replacement to MobileNet V3s for School Attribute Detection. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1944-1954.