Comparison of Residual Network-50 and Convolutional Neural Network Conventional Architecture For Fruit Image Classification

Authors

  • Arie Satia Dharma Institut Teknologi Del, Laguboti, Indonesia http://orcid.org/0000-0002-6129-3869
  • Judah Michael Parluhutan Sitorus Institut Teknologi Del, Laguboti, Indonesia
  • Andreas Hatigoran Institut Teknologi Del, Laguboti, Indonesia

DOI:

10.33395/sinkron.v8i3.12721

Keywords:

Accuracy;, Convolutional Neural Network;, Fruit Classification;, Machine Learning;, Residual Network-50

Abstract

Classification of fruit images using machine learning technology has had a significant impact on human life by enabling accurate recognition of various fruits. With the advancements in technology, machine learning architectures have become increasingly diverse and sophisticated, providing enhanced capabilities for fruit image classification. However, previous studies have primarily focused on classifying fruits at a basic level. Therefore, there is a growing need for the development and application of Fruit Image Classification systems within the community, particularly in the field of agriculture. Such applications can play a pivotal role in leveraging technology to benefit the agricultural sector, empowering users to gain satisfaction and knowledge regarding different fruits through the utilization of these applications. In this study, we employ both a conventional Convolutional Neural Network (CNN) architecture and a Residual Network-50 for fruit image classification. To ensure robust performance evaluation, the dataset is divided into training and testing subsets, with fruits categorized into specific classes. Furthermore, identical preprocessing and optimization techniques are applied to both architectures to maintain consistency and fairness during the evaluation process. The results of our classification experiments on a dataset consisting of 17 different fruit classes reveal that the conventional CNN architecture achieves an impressive accuracy of 0.998 (99%) with a minimal loss of 0.009. On the other hand, the Residual Network-50 demonstrates a slightly lower accuracy of 0.994 (99%) but with a slightly higher loss of 0.02. Despite the higher loss, the Residual Network-50's accuracy remains comparable to that of the conventional architecture, showcasing its potential for fruit image classification. By leveraging the power of machine learning and these advanced architectures, fruit image classification systems can provide valuable insights and assistance to users. They can facilitate informed decision-making in various domains, including agriculture, food production, and consumer education.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Arie Satia Dharma, Institut Teknologi Del, Laguboti, Indonesia

 

 

Judah Michael Parluhutan Sitorus, Institut Teknologi Del, Laguboti, Indonesia

 

 

Andreas Hatigoran, Institut Teknologi Del, Laguboti, Indonesia

 

 

References

Angio, M. H., & Irawanto, R. (2019). PENDATAAN JENIS BUAH LOKAL INDONESIA KOLEKSI KEBUN RAYA PURWODADI. Jambura Edu Biosfer Journal, 1(2). https://doi.org/10.34312/jebj.v1i2.2476

Arrofiqoh, E. N., & Harintaka, H. (2018). IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI. GEOMATIKA, 24(2). https://doi.org/10.24895/jig.2018.24-2.810

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December. https://doi.org/10.1109/CVPR.2016.90

Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 3(2).

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.

Liang, G., & Zheng, L. (2020). A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 187. https://doi.org/10.1016/j.cmpb.2019.06.023

Maulana, F. F., & Rochmawati, N. (2020). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 1(02). https://doi.org/10.26740/jinacs.v1n02.p104-108

Nashrullah, F., Wibowo, S. A., & Budiman, D. G. (2020). Investigasi Parameter Epoch Pada Arsitektur ResNet-50 Untuk Klasifikasi Pornografi. COMPLETE , 1(1).

Paraijun, F., Aziza, R. N., & Kuswardani, D. (2022). Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah. KILAT, 11(1). https://doi.org/10.33322/kilat.v10i2.1458

Patil, A., & Rane, M. (2021). Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition. Smart Innovation, Systems and Technologies, 195. https://doi.org/10.1007/978-981-15-7078-0_3

Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2018). An Overview of Convolutional Neural Network: Its Architecture and Applications. Preprints 2018, (February).

Setiawan, W. (2020). PERBANDINGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI FUNDUS. Jurnal Simantec, 7(2). https://doi.org/10.21107/simantec.v7i2.6551

Shafiq, M., & Gu, Z. (2022). Deep Residual Learning for Image Recognition: A Survey. Applied Sciences (Switzerland), Vol. 12. https://doi.org/10.3390/app12188972

Sitepu, A. C., & Sigiro, M. (2021). Analisis Fungsi Aktivasi ReLu Dan Sigmoid Menggunakan Optimizer SGD Dengan Representasi MSE Pada Model Backpropagation. Jurnal Teknik Informatika Komputer Universal, 1(1).

Upreti, A. (2022). Convolutional Neural Network (CNN): A comprehensive overview. International Journal of Multidisciplinary Research and Growth Evaluation. https://doi.org/10.54660/anfo.2022.3.4.18

Wen, L., Li, X., & Gao, L. (2020). A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Computing and Applications, 32(10). https://doi.org/10.1007/s00521-019-04097-w

Wu, D., Ying, Y., Zhou, M., Pan, J., & Cui, D. (2023). Improved ResNet-50 deep learning algorithm for identifying chicken gender. Computers and Electronics in Agriculture, 205. https://doi.org/10.1016/j.compag.2023.107622

Yu, X., Kang, C., Guttery, D. S., Kadry, S., Chen, Y., & Zhang, Y. D. (2021). ResNet-SCDA-50 for Breast Abnormality Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(1). https://doi.org/10.1109/TCBB.2020.2986544

Yuliani, E., Aini, A. N., & Khasanah, C. U. (2020). Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar. Jurnal Informa : Jurnal Penelitian Dan Pengabdian Masyarakat, 5(3). https://doi.org/10.46808/informa.v5i3.140

Downloads


Crossmark Updates

How to Cite

Dharma, A. S., Sitorus, J. M. P. ., & Hatigoran, A. . (2023). Comparison of Residual Network-50 and Convolutional Neural Network Conventional Architecture For Fruit Image Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1863-1874. https://doi.org/10.33395/sinkron.v8i3.12721