Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method

Authors

  • I Gede Iwan Sudipa Fakultas Teknologi dan Informatika, Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia https://orcid.org/0000-0002-4278-9068
  • Roni Riana Fakultas Teknologi dan Informatika, Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • I Nyoman Tri Anindia Putra Fakultas Teknologi dan Informatika, Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • Christina Purnama Yanti Fakultas Teknologi dan Informatika, Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia, Bali, Indonesia
  • Made Dona Wahyu Aristana Fakultas Teknologi dan Informatika, Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia

DOI:

10.33395/sinkron.v8i3.12773

Keywords:

ARIMA Method, Forecasting Trend, Top 3 Indonesian Bank

Abstract

The number of investors in Indonesia increases annually. This is due to the growing popularity of investing, particularly stock investment. There are currently three largest equities in the banking industry, namely BBCA, BBRI, and BMRI. Stock prices fluctuate and form multiple patterns of price movements; therefore, investors must be able to recognize the patterns and trends of securities on the capital market in order to plan long-term investments, maximize potential profits, and reduce the risk of investment losses. In addition to knowing the trajectory of the stock market's trend, investors rely heavily on forecasting. Forecasting is necessary so that investors can anticipate future prices. The Autoregressive Integrated Moving Average (ARIMA) method is a frequently used method for forecasting time series data. In general, ARIMA is represented by the formula ARIMA (p, d, q), where p represents the Autoregressive (AR) order, d represents the difference, and q represents the Moving Average (MA) order. The trend of BBCA, BBRI, and BMRI stock data was effectively predicted using the ARIMA method. The results of this study are presented as diagrams of actual and forecasted data for the next 12 periods, as well as predictions of the optimal purchase price points for stocks. The ARIMA model of each stock also generates a low MAPE error value, with MAPE values of 4% for BBCA, 5% for BBRI, and 7% for BMRI. The MAPE value derived by each model is incorporated into the MAPE value with a high degree of precision, as it falls below 10%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abidin, A. A., Buiney, P. F., & Nohe, D. A. (2022). Peramalan Data Ekspor Kalimantan Barat Dengan Metode Autoregressive Integrated Moving Average (Arima). … Nasional Matematika Dan …, 2, 96–107.

Anwar, B., Jalinus, N., & Abdullah, R. (2023). Weather Forecast In Medan City With Hopfield Artificial Neural Network Algorithm. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(1), 398–404.

Apriliani, A., Zainuddin, H., Agussalim, A., & Hasanuddin, Z. (2020). Peramalan Tren Penjualan Menu Restoran Menggunakan Metode Single Moving Average. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1161. https://doi.org/10.25126/jtiik.2020722732

Bursa Efek Indonesia. (2022). 50 Biggest Market Capitalization. 29 Desember.

Elsaraiti, M., Ali, G., Musbah, H., Merabet, A., & Little, T. (2021). Time series analysis of electricity consumption forecasting using ARIMA model. 2021 IEEE Green Technologies Conference (GreenTech), 259–262.

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1847979018808673.

Ferdinandus, Y. R. M., Kusrini, K., & Hidayat, T. (2023). Gold Price Prediction Using the ARIMA and LSTM Models. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(3), 1255–1264.

Investing.com. (2022). Stock Market Quotes & Financial News. 29 Desember.

Irawan, W. (2019). Peramalan Harga Saham PT.Unilever Tbk dengan Menggunakan Metode ARIMA. Jurnal Matematika UNAND, 4(3), 80. https://doi.org/10.25077/jmu.4.3.80-89.2015

Kumar, R., Kumar, P., & Kumar, Y. (2022). Multi-step time series analysis and forecasting strategy using ARIMA and evolutionary algorithms. International Journal of Information Technology, 14(1), 359–373.

Kurniasi, A. A., Saptari, M. A., & Ilhadi, V. (2021). Aplikasi Peramalan Harga Saham Perusahaan Lq45 Dengan Menggunakan Metode Arima. Sisfo: Jurnal Ilmiah Sistem Informasi, 5(1). https://doi.org/10.29103/sisfo.v5i1.4849

Makkulau, A. R., & Yuana, I. (2021). Penerapan Analisa Fundamental dan Technical Analysis Sebagai Upaya Dalam Meningkatkan Keinginan Investasi Mahasiswa di Pasar Modal Syariah. YUME: Journal of Management, 4(3), 165–180.

Muhammad Rizal, Dewi Rosa Indah, & Rahmi Meutia. (2021). Analisis Peramalan Produksi Menggunakan Trend Moment Pada Kilang Padi Do’a Ibu Diperlak Kecamatan Pereulak. Jurnal Samudra Ekonomika, 5(2), 161–168. https://doi.org/10.33059/jse.v5i2.4274

Permana, R. (2022). Analisis Nilai Wajar Harga Saham dengan Metode Fundamental dan Metode Teknikal pada Perusahaan di Subsektor Telekomunikasi yang Terdaftar di Bursa Efek Indonesia. Sekolah Tinggi Ilmu Ekonomi Indonesia Jakarta.

Prasetya, B. D., Pamungkas, F. S., & Kharisudin, I. (2020). Pemodelan dan Peramalan Data Saham dengan Analisis Time Series menggunakan Python. PRISMA, Prosiding Seminar Nasional Matematika, 3, 714–718.

Rezaldi, D. A., & Sugiman. (2021). Peramalan Metode ARIMA Data Saham PT . Telekomunikasi Indonesia. Prisma, 4, 611–620.

Rusyida, W. Y., & Pratama, V. Y. (2020). Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA. Square : Journal of Mathematics and Mathematics Education, 2(1), 73. https://doi.org/10.21580/square.2020.2.1.5626

Wibawa, A. P., Qonita, A., & Dwiyanto, F. A. (2018). Perbandingan metode prediksi pada bidang bisnis dan keuangan. Prosiding Seminar Ilmu Komputer Dan Teknologi Informasi, 3(1), 129–133.

Yang, X. (2019). The prediction of gold price using ARIMA model. 2nd International Conference on Social Science, Public Health and Education (SSPHE 2018), 273–276.

Yasmin, A. (2021). Foreign Ownership Effect to Stock Market Liquidity in Indonesia. Manajerial, 8(01), 01. https://doi.org/10.30587/manajerial.v8i01.1940

Zahro, N. A., Mustofiyah, N., & Putri, N. A. (2021). Analisis Kausalitas Problematika Issue Frekuensi 5G Terhadap Stabilitas Saham Telekomunikasi di BEI. … Nasional Riset Pasar Modal, 1(1).

Zuhrat, L., Devianto, D., & HG, I. R. (2019). Pemodelan Jumlah Kasus DBD yang Meninggal di Kota Padang dengan Menggunakan Regresi Poisson. Jurnal Matematika UNAND, 4(4), 57–64.

Downloads


Crossmark Updates

How to Cite

Sudipa, I. G. I., Riana, R., Putra, I. N. T. A., Yanti, C. P. ., & Aristana, M. D. W. . (2023). Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1883-1893. https://doi.org/10.33395/sinkron.v8i3.12773

Most read articles by the same author(s)