Pneumonia Classification Based on Lung CT Scans Using Vgg-19


  • Adya Zizwan Putra Universitas Prima Indonesia
  • D. V. M. Situmorang Universitas Prima Indonesia
  • G. wahyudi Universitas Prima Indonesia
  • J. P. K. giawa Universitas Prima Indonesia
  • R. A. Tarigan Universitas Prima Indonesia




Pneumonia Detection; CT Scan Classification; VGG-19 Model; Deep SMOTE; Data Augmentation.


This research harnesses technology for critical health applications, specifically, pneumonia detection through medical imaging. X-ray photography allows radiologists to visualize the patient's health state, including the detection of lung infections signifying pneumonia. The study's centerpiece is the application of the VGG-19 model in classifying lung CT scan images, helping discern normal from pneumonia-indicative conditions. A comprehensive preprocessing procedure is employed, entailing pixel rescaling and data augmentation techniques. To address data imbalance, a critical issue in machine learning, we incorporate the Synthetic Minority Over-sampling Technique (SMOTE). The developed VGG-19 model demonstrates impressive performance, achieving a 94.6% accuracy rate in classifying lung CT scans. This finding underscores the potential of the VGG-19 model as a reliable tool for pneumonia detection based on lung CT scans. Such a tool could revolutionize the field, providing an efficient and accurate method for early pneumonia diagnosis, thereby allowing for timely treatment.

GS Cited Analysis


Download data is not yet available.


Abu, M., Zahri, N. A. H., Amir, A., Ismail, M. I., Yaakub, A., Anwar, S. A., & Ahmad, M. I. (2022). A comprehensive performance analysis of transfer learning optimization in visual field defect classification. Diagnostics, 12(5), 1258.

Agrawal, K., Kumar, R., & Jain, S. (2022). An efficient ensemble model for diagnosing covid-19 and pneumonia using chest x-ray images. Indian Journal of Science and Technology, 15(38), 1900–1906.

Ali, M. S. (2023). Chest X-Ray Based Pneumonia Classification Using Vgg-19 Chest X-Ray Based Pneumonia Classification Using VGG-19. January.

Bayu, T. (2022). Identifikasi Citra Plasmodium Guna Mendeteksi Parasit Penyakit Malaria dengan Menggunakan Algorithm Convolutional Neural Network. Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 8(2), 113–123.

Illahi, P. P., Fauzi, H., & Siadari, T. S. (2022). Klasifikasi Penyakit Pneumonia Dan Covid- 19 Berbasis Citra X-Ray Menggunakan Arsitektur Deep Residual Network. E-Proceeding of Engineering, 9(4), 1837–1843.

Khattar, A., & Quadri, S. (2022). “Generalization of convolutional network to domain adaptation network for classification of disaster images on twitter.” Multimedia Tools and Applications, 81.

Lee, K.-S., Kim, J. Y., Jeon, E., Choi, W. S., Kim, N. H., & Lee, K. Y. (2020). Evaluation of scalability and degree of fine-tuning of deep convolutional neural networks for COVID-19 screening on chest X-ray images using explainable deep-learning algorithm. Journal of Personalized Medicine, 10(4), 213.

Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., & Chen, J. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433–438.

Mahin, M., Tonmoy, S., Islam, R., Tazin, T., Monirujjaman Khan, M., & Bourouis, S. (2021). Classification of COVID-19 and Pneumonia Using Deep Transfer Learning. Journal of Healthcare Engineering, 2021(January 2020), 1–11.

Maysanjaya, I. Md. D. (2020). Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 190–195.

Muhammad, Y., Alshehri, M. D., Alenazy, W. M., Vinh Hoang, T., & Alturki, R. (2021a). Identification of Pneumonia Disease Applying an Intelligent Computational Framework Based on Deep Learning and Machine Learning Techniques. Mobile Information Systems, 2021.

Muhammad, Y., Alshehri, M. D., Alenazy, W. M., Vinh Hoang, T., & Alturki, R. (2021b). Identification of pneumonia disease applying an intelligent computational framework based on deep learning and machine learning techniques. Mobile Information Systems, 2021, 1–20.

Nugroho, K. S. (2019). Confusion matrix untuk evaluasi model pada supervised learning. Diakses Dari: Https://Ksnugroho. Medium. Com/Confusion-Matrix-Untuk-Evaluasi-Model-Pada-Unsupervised-Machine-Learning-Bc4b1ae9ae3f.

Oyelade, O. N., & Ezugwu, A. E. (2021). A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomedical Signal Processing and Control, 65, 102366.

Perdananto, A. (2019). Penerapan deep learning pada Aplikasi prediksi penyakit Pneumonia berbasis Convolutional Neural networks. Journal of Informatics and Communication Technology (JICT), 1(2), 1–10.

Saputro, T. R., & Santoso, B. (2023). Implementasi Convolutional Neural Network Pada Penyakit Pneumonia ( Studi Kasus : Dinas Kesehatan Kota Tangerang Selatan ). 2(3), 1007–1013.

Setiawan, W. (2020). Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus. Jurnal Simantec, 7(2), 48–53.

Tej Bahadur Chandra, K. V. (2020). Pneumonia Detection on Chest X-Ray Using Machine Learning Paradigm. Proceedings of 3rd International Conference on Computer Vision and Image Processing, Springer Singapore.

Xiao, J., Wang, J., Cao, S., & Li, B. (2020). Application of a novel and improved VGG-19 network in the detection of workers wearing masks. Journal of Physics: Conference Series, 1518(1), 012041.

Zhou, Y., Chang, H., Lu, Y., Lu, X., & Zhou, R. (2021). Improving the Performance of VGG through Different Granularity Feature Combinations. IEEE Access, 9, 26208–26220.


Crossmark Updates

How to Cite

Putra, A. Z. ., Situmorang, D. V. M., wahyudi, G., giawa, J. P. K., & Tarigan, R. A. . (2023). Pneumonia Classification Based on Lung CT Scans Using Vgg-19. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2458-2466.