Classification of E-Commerce Product Descriptions with The Tf-Idf and Svm Methods

Authors

  • Dagobert Pakpahan Universitas Prima Indonesia
  • Veronika Siallagan Universitas Prima Indonesia
  • Saut Siregar Universitas Prima Indonesia

DOI:

10.33395/sinkron.v8i4.12779

Keywords:

E-commerce Product Classification; Support Vector Machine; SVM; Natural Language Processing; TF-IDF

Abstract

The rapidly growing e-commerce sector presents a significant challenge in navigating an abundance of products. Understanding and classifying product descriptions efficiently and accurately is crucial to improving user experience and business operations. This research employed the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm and Support Vector Machine (SVM) for the classification of e-commerce product descriptions into four categories: Electronics, Household Items, Books, and Clothing. The initial phase involved pre-processing of text data which incorporated text cleaning, tokenization, part-of-speech tagging, entity recognition, and conversion into a vector representation. The resulting model was trained and tested using the SVM algorithm. Our model demonstrated a high degree of accuracy, achieving 99.2% during the training phase and 95.7% in the testing phase. This model provides a valuable tool for e-commerce businesses, as it allows for accurate classification of products based on their descriptions. This could lead to improved user navigation and overall user experience on e-commerce platforms.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alhamra, A. R. (n.d.). Rancang Bangun Aplikasi Pencarian Produk Sneakers Dengan Harga Terbaik Dari Beberapa E-commerce Di Indonesia Menggunakan Algoritma Boyer Moore Berbasis Website (Studi Kasus: Ourdailydose. net & Ncrsport. com). Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta.

Amrulloh, A., & Adam, I. F. (2021). Sistem Pencarian Similaritas Judul Tugas Akhir Menggunakan Metode TF-IDF. Jurnal CoreIT, 7(2).

Arifin, N., Enri, U., & Sulistiyowati, N. (2021). Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 6(2), 129–136.

Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm. Jurnal Data Mining Dan Sistem Informasi, 2(1), 31–37.

Kurniawan, S., Gata, W., Puspitawati, D. A., Parthama, I. K. S., Setiawan, H., & Hartini, S. (2020). Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis. IOP Conference Series: Materials Science and Engineering, 835(1), 012057.

Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto). Jurnal Informatika Dan Rekayasa Elektronik, 2(2), 43–51.

Naraloka, T. (2021). Pemanfaatan Teknologi Untuk Menganalisa Sentimen Masyarakatdalam Membantu Peningkatan Ekonomi Kreatif Di Era New Normal. Proceeding Seminar Nasional Ilmu Komputer, 1(1), 121–137.

Nasution, E. Y., Hariani, P., Hasibuan, L. S., & Pradita, W. (2020). Perkembangan Transaksi Bisnis E-Commerce terhadap Pertumbuhan Ekonomi di Indonesia. Jesya (Jurnal Ekonomi Dan Ekonomi Syariah), 3(2), 506–519.

Prastyo, P. H., Ardiyanto, I., & Hidayat, R. (2020). Indonesian Sentiment Analysis: An Experimental Study of Four Kernel Functions on SVM Algorithm with TF-IDF. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 1–6.

Pratiwi, R. W., Dairoh, D., & Af’idah, D. I. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics Information System Software Engineering and Applications (INISTA), 4(1), 40–46.

RAHMAWATI, Y., & others. (2019). Penerapan Strategi Pemasaran Website E-Commerce Untuk Meningkatkan Volume Penjualan Produk (Studi Kasus Pada Website www. furnitureanakonline. com, www. ukirjepara. com dan www. jeparaheritage. id). UNISNU Jepara.

Ristiano, T. A. (2022). Implementasi Klasifikasi Teks Sms Spam Menggunakan Metode Svm Dengan Ekstraksi Fitur Fasttext.

Suryati, E., Styawati, S., & Aldino, A. A. (2023). Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Dan Sistem Informasi, 4(1), 96–106.

Downloads


Crossmark Updates

How to Cite

Pakpahan, D., Siallagan, V., & Siregar, S. (2023). Classification of E-Commerce Product Descriptions with The Tf-Idf and Svm Methods. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2130-2137. https://doi.org/10.33395/sinkron.v8i4.12779