Implementation of Transfer Learning in CNN for Classification of Nut Type
DOI:
10.33395/sinkron.v8i4.12784Keywords:
Transfer Learning, Convolutional Neural Network, Nut Classification, Inception V3, XceptionAbstract
Nut has a high nutritional value and is widely used as an ingredient in cooking and snacks. Nut is included in the group of grains and has many types. Each type of nut has different nutritional content. Some types of nuts can also cause allergies or negative reactions in certain people, so it is important to identify the type of nut to be consumed. There are many types of nut that are different from each other, but some of them are similar. This makes it difficult to distinguish between the types of nuts, so there is a need for technology that can accurately identify nut types. Transfer Learning method is used to utilize trained models and applied to nut type classification. The two CNN models used are Inception V3 and Xception. The dataset consists of 11 types of nuts consisting of 1,320 data. The data is divided into 60% for training data and 40% for validation data. Preprocessing is done to ensure the image size is consistent and clarify the focus on the data image to be tested. The training results show that the Xception model is superior to Inception V3, with an accuracy of 86.36% on the validation data, while Inception V3 only reached 74.05%. Xception is able to predict nut types more precisely.
Downloads
References
Fadlia, N., & Kosasih, R. (2019). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397
Firmansyah, R. (2021). Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Bunga.
Fuadi, A., & Suharso, A. (2022). Perbandingan Arsitektur Mobilenet dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(3), 701–710. https://doi.org/10.29100/jipi.v7i3.3026
Iswantoro, D., & Handayani UN, D. (2022). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065
Kholil, M., Waspada, H. P., & Akhsani, R. (2022). Klasifikasi Penyakit Infeksi Pada Ayam Berdasarkan Gambar Feses Menggunakan Convolutional Neural Network. SINTECH (Science and Information Technology) Journal, 5(2), 198–204. https://doi.org/10.31598/sintechjournal.v5i2.1179
Lu, P., Song, B., & Xu, L. (2021). Human face recognition based on convolutional neural network and augmented dataset. Systems Science and Control Engineering, 9(S2), 29–37. https://doi.org/10.1080/21642583.2020.1836526
Marifatul Azizah, L., Fadillah Umayah, S., & Fajar, F. (2018). Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer. Semesta Teknika, 21(2), 230–236. https://doi.org/10.18196/st.212229
Maulana, F. F., & Rochmawati, N. (2020). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 1(02), 104–108. https://doi.org/10.26740/jinacs.v1n02.p104-108
Rizwan Iqbal, H. M., & Hakim, A. (2022). Classification and Grading of Harvested Mangoes Using Convolutional Neural Network. International Journal of Fruit Science, 22(1), 95–109. https://doi.org/10.1080/15538362.2021.2023069
Saputra, O., Mulyana, D. I., & Yel, M. B. (2022). Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Senjata Tradisional Di Jawa Tengah Dengan Metode Transfer Learning. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 5(2), 45–52. https://doi.org/10.47970/siskom-kb.v5i2.282
Thiodorus, G., Prasetia, A., Ardhani, L. A., & Yudistira, N. (2021). Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network. Teknologi, 11(2), 74–83. https://doi.org/10.26594/teknologi.v11i2.2402
Ules, T., Haselmann, M., Grieβer, M., & Gruber, D. P. (2022). Finger Contact Area Analysis with Convolutional Neural Networks. Applied Artificial Intelligence, 36(1), 67–81. https://doi.org/10.1080/08839514.2021.1987035
Wijaya, A. E., Swastika, W., & Kelana, O. H. (2021). Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray. Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 10–15. https://doi.org/10.33479/sb.v2i1.125
Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn). Jurnal Gaussian, 9(3), 273–282. https://doi.org/10.14710/j.gauss.v9i3.27416
Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78–89. https://doi.org/10.36448/expert.v11i2.2063
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Jimmy Sagala, Insidini Fawwaz, Reivaldo Sijabat, Novita Maringga

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.