Development of Expert System Application to Detect Chicken Disease using the Forward Chaining Method
DOI:
10.33395/sinkron.v8i3.12843Keywords:
Chicken; Detection; Disease; Expert System; Forward ChainingAbstract
Chicken is the most widely kept and consumed poultry in Indonesia. Due to the large population of poultry, a variety of diseases have also emerged, from minor diseases to diseases that can kill chickens and infect humans. As a result of these diseases, there are implications for the losses suffered by chicken farmers. Most farmers find it very difficult to identify chicken diseases due to their lack of knowledge. On the other hand, expecting treatment from a veterinarian or expert is very limited and expensive. Therefore, a system is needed that can easily help chicken farmers detect diseases in their pet chickens. This research aims to build an expert system to detect chicken diseases by applying the forward chaining method. The expert system is implemented as a web-based application. The research stages start with identifying problems, collecting data, creating a knowledge base and production rules, building applications, and getting results. The results showed that the forward chaining method provides convenience in detecting chicken diseases. This is proven by only selecting the symptoms of the disease that appear, and then the application will provide conclusions regarding what type of disease is being suffered by chickens. In addition, this application also provides information related to ways of handling and control that can be done to overcome the chicken disease. Hopefully, the results of this research can facilitate chicken farmers in identifying and handling diseases effectively and efficiently.
Downloads
References
Al-qumboz, M. N. A., & Abu-Naser, S. S. (2019). Spinach Expert System: Diseases and Symptoms. International Journal of Academic Information Sytems Research (IJAISR), 3(3), 16–22.
Aminudin, N., Taufiq, & Amaliah, I. B. (2019). Aplikasi Web Mobile Sistem Pakar Diagnosa Penyakit Ayam Ras Petelur. Jurnal TAM (Technology Acceptance Model), 10(1), 33–40.
Anggrawan, A., Satuang, S., & Abdillah, M. N. (2020). Sistem Pakar Diagnosis Penyakit Ayam Broiler Menggunakan Forward Chaining dan Certainty Factor. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 97–108. https://doi.org/10.30812/matrik.v20i1.847
Annur, C. M. (2022, October). Konsumsi Daging Ayam Warga RI Meningkat, Capai Rekor pada 2021. Databoks Katadata. Retrieved from https://databoks.katadata.co.id/datapublish/2022/10/06/konsumsi-daging-ayam-warga-ri-meningkat-capai-rekor-pada-2021
Apriliyani, R., Tyas, F. A., & Permatasari, E. K. (2022). Perbandingan Metode Forward Chaining dan Backward Chaining pada Sistem Pakar Identifikasi Gaya Belajar. J-ICOM (Jurnal Informatika Dan Teknologi Komputer), 3(2), 84–92. Retrieved from https://ejurnalunsam.id/index.php/jicom/article/view/6290
Ardiansah, I., Efatmi, F., Mardawati, E., & Putri, S. H. (2020). Feasibility Testing of a Household Industry Food Production Certificate Using an Expert System with Forward Chaining Method. JOIN (Jurnal Online Informatika), 5(2), 137. https://doi.org/10.15575/join.v5i2.579
Atimi, R. L., & Sartika. (2022). Implementasi Forward Chaining Method untuk Analisis Klasifikasi Mineralogi Batuan Beku. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(1), 80–86. Retrieved from https://jurnal.untan.ac.id/index.php/jepin/article/download/52374/75676592893
Cahyaningtyas, C., Purnomo, H. D., & Kristianto, B. (2019). The Use of Naive Bayes for Broiler Digestive Tract Disease Detection. Journal of Information Technology and Computer Engineering, 3(01), 1–7. https://doi.org/10.25077/jitce.3.01.1-7.2019
Degu, M. Z., & Simegn, G. L. (2023). Smartphone based detection and classification of poultry diseases from chicken fecal images using deep learning techniques. Smart Agricultural Technology, 4, 100221. https://doi.org/https://doi.org/10.1016/j.atech.2023.100221
Hafizal, M. T., Putra, D. P., Wirianata, H., Nugraha, N. S., Suparyanto, T., Hidayat, A. A., & Pardamean, B. (2023). Implementation of expert systems in potassium deficiency in cocoa plants using forward chaining method. Procedia Computer Science, 216(2022), 136–143. https://doi.org/10.1016/j.procs.2022.12.120
Imamah, Agustiono, W., Rochman, E. M., & Firdaus, N. (2020). Mobile Expert System Using Forward Chaining for Diagnosing Teak Tree Disease. Journal of Physics: Conference Series, 1569(2), 22072. https://doi.org/10.1088/1742-6596/1569/2/022072
Kusrini, W., Fathurrahman, & Sayyidati, R. (2020). Sistem Pakar untuk Diagnosa Penyakit Ayam Pedaging. Edumatic: Jurnal Pendidikan Informatika, 4(2), 75–84. https://doi.org/10.29408/edumatic.v4i2.2616
Novaliendry, D., Wattimenac, F. Y., Renyaan, A. S., Lubis, A. L., Ramadhani, D., Lizar, Y., … Khairul. (2020). Development of an Expert System Application to Detect Vitamin Deficiencies in the Human Body. Revista Argentina de Clinica Psicologica, 29(5), 956–965. https://doi.org/10.24205/03276716.2020.1092
Pahlevi, O., & Atmojo, M. K. (2020). The Utilization of Expert System for Diagnosing Diseases Cocoa Plants Based on Android Using the Forward Chaining Method. SinkrOn, 4(2), 10. https://doi.org/10.33395/sinkron.v4i2.10481
Rupnawar, A., Jagdale, A., & Navsupe, S. (2016). Study on Forward Chaining and Reverse Chaining in Expert System. International Journal of Advanced Engineering Research and Science (IJAERS), 3(12), 60–62. https://doi.org/10.22161/ijaers/3.12.12
Salman, F. M., & Abu-Naser, S. S. (2019). Expert System for Castor Diseases and Diagnosis. International Journal of Engineering and Information Systems (IJEAIS), 3(3), 1–10.
Susanto, D., Fadlil, A., & Yudhana, A. (2020). Application of the Certainty Factor and Forward Chaining Methods to a Goat Disease Expert System. Khazanah Informatika, 6(2), 158–164. https://doi.org/10.23917/khif.v6i2.10867
Tabbu, C. R. (2019). Penyakit Ayam dan Penanggulangannya (1st ed.). Yogyakarta: Penerbit Kanisius.
Wati, E. F., & Puspitasari, A. (2020). Expert System for Diagnosing Pregnancy Complaints by Forward Chaining. SinkrOn, 5(1), 7. https://doi.org/10.33395/sinkron.v5i1.10593
Windarto, Y. E., & Marfuah, M. (2020). Implementasi Naives Bayes-Certainty Factor untuk Diagnosa Penyakit Menular Ayam. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(2), 208–214. https://doi.org/10.32736/sisfokom.v9i2.823
Yulianto, D., Idris, Wasiso, I., & Kusrini. (2020). Implementasi Metode Certainty Factors Pada Sistem Pakar Diagnosis Penyakit Ayam Berbasis Web. Research : Journal of Computer, Information System, & Technology Management, 3(1), 16–23. Retrieved from https://citec.amikom.ac.id/main/index.php/citec/article/view/198
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Ahmad Ramadan, Syaiful Zuhri Harahap, Rahma Muti’ah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.