Ontology-Based Food Menu Recommender System for Patients with Coronary Heart Disease
DOI:
10.33395/sinkron.v8i4.12858Keywords:
recommender system, coronary heart disease, ontology, Semantic Web Rule Language, chatbotAbstract
Coronary heart disease is one of the leading causes of death. Knowledge of dietary patterns and proper food selection is an effort to address the risk and support coronary heart disease's healing process. Therefore, this study developed a food menu recommender system as a reference for patients with coronary heart disease. The recommender system is crucial in creating a proper dietary pattern for managing personalized meal plans. The system calculates the required nutritional needs of users. Ontology is used to represent knowledge about nutrition data and food intake. The ontology base with Semantic Web Rule Language (SWRL) enables the system to identify the most suitable foods for patients with coronary heart disease. We use SWRL rules to generate recommendation conclusions based on the existing ontology. Using this language enhances the descriptive logic capabilities, as the rules can overcome the limitations of the ontology language. Therefore, the system is built to find food menu options that match the required nutrition for patients. The nutritionist knowledge will be used to measure the system's performance compared to the recommendations made by nutritionists. From the user data sample, 150 recommended food menu data were obtained. The validation performance results obtained a precision 0.893, recall 1, and F_Score 94.3%.
Downloads
References
Aditya, N., Baizal, Z. K. A., & Dharayani, R. (2023). Healthy Food Recommender System for Obesity Using Ontology and Semantic Web Rule Language. Building of Informatics, Technology and Science (BITS), 4(4), 1799–1804. https://doi.org/10.47065/bits.v4i4.3005
Anderson, L., Brown, J. P. R., Clark, A. M., Dalal, H., Rossau, H. K. K., Bridges, C., & Taylor, R. S. (2017). Patient education in the management of coronary heart disease. Cochrane Database of Systematic Reviews, 6. https://doi.org/10.1002/14651858.CD008895.pub3
Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., Chiuve, S. E., Cushman, M., Delling, F. N., Deo, R., & others. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation, 137(12), e67–e492. https://doi.org/10.1161/CIR.0000000000000558
Calvaresi, D., Eggenschwiler, S., Calbimonte, J.-P., Manzo, G., & Schumacher, M. (2021). A personalized agent-based chatbot for nutritional coaching. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 682–687. https://doi.org/10.1145/3486622.3493992
Casas, J., Mugellini, E., & Khaled, O. A. (2018). Food diary coaching chatbot. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 1676–1680. https://doi.org/10.1145/3267305.3274191
El Massari, H., Gherabi, N., Mhammedi, S., Sabouri, Z., & Ghandi, H. (2022). Ontology-based decision tree model for prediction of cardiovascular disease. Indian J. Comput. Sci. Eng, 13(3), 851–859. 10.21817/indjcse/2022/v13i3/221303143
Gupta, J., Singh, V., & Kumar, I. (2021). Florence-a health care chatbot. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 504–508. 10.1109/ICACCS51430.2021.9442006
Harris, J. A., & Benedict, F. G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences, 4(12), 370–373. https://doi.org/10.1073/pnas.4.12.370
Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G., Riley, L. M., Savin, S., Khan, T., Altay, S., & others. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health, 7(10), e1332–e1345. https://doi.org/10.1016/S2214-109X(19)30318-3
Mckensy-Sambola, D., Rodr’iguez-Garc’ia, M. Á., Garc’ia-Sánchez, F., & Valencia-Garc’ia, R. (2021). Ontology-based nutritional recommender system. Applied Sciences, 12(1), 143. https://doi.org/10.3390/app12010143
Mozaffarian, D. (2017). Global scourge of cardiovascular disease: time for health care systems reform and precision population health. In Journal of the American College of Cardiology (Vol. 70, Issue 1, pp. 26–28). American College of Cardiology Foundation Washington, DC. https://doi.org/10.1016/j.jacc.2017.05.007
Noy, N. F., McGuinness, D. L., & others. (2001). Ontology development 101: A guide to creating your first ontology. Stanford knowledge systems laboratory technical report KSL-01-05 and~….
Palanica, A., Flaschner, P., Thommandram, A., Li, M., & Fossat, Y. (2019). Physicians’ perceptions of chatbots in health care: cross-sectional web-based survey. Journal of Medical Internet Research, 21(4), e12887. doi:10.2196/12887
Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50, 21–48. https://doi.org/10.1007/s10462-017-9539-5
Tian, Y., Deng, P., Li, B., Wang, J., Li, J., Huang, Y., & Zheng, Y. (2019). Treatment models of cardiac rehabilitation in patients with coronary heart disease and related factors affecting patient compliance. Reviews in Cardiovascular Medicine, 20(1), 27–33. https://doi.org/10.31083/j.rcm.2019.01.53
Toledo, R. Y., Alzahrani, A. A., & Martinez, L. (2019). A food recommender system considering nutritional information and user preferences. IEEE Access, 7, 96695–96711. 10.1109/ACCESS.2019.2929413
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., & others. (2022). Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation, 145(8), e153–e639. https://doi.org/10.1161/CIR.0000000000001052
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Z. K. A. Baizal, Najla Nur Adila
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.