Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks

Authors

  • Maie Isthigosah University Amikom Yogyakarta, Indonesia
  • Andi Sunyoto University Amikom Yogyakarta, Indonesia
  • Tonny Hidayat University Amikom Yogyakarta, Indonesia

DOI:

10.33395/sinkron.v8i4.12878

Keywords:

Augmentation; Convolutional Neural Network; Image Generator; SMOTE; ADASYN

Abstract

In applying Convolutional Neural Network (CNN) to computer vision tasks in the medical domain, it is necessary to have sufficient datasets to train models with high accuracy and good general ability in identifying important patterns in medical data. This overfitting is exacerbated by data imbalances, where some classes may have a smaller sample size than others, leading to biased predictive results. The purpose of this augmentation is to create variation in the training data, which in turn can help reduce overfitting and increase the ability of the model to generalize. Therefore, comparing augmentation techniques becomes essential to assess and understand the relative effectiveness of each method in addressing the challenges of overfitting and data imbalance in the medical domain. In the context of the research described, namely a comparative analysis of augmentation performance on CNN models using the ResNet101 architecture, a comparison of augmentation techniques such as Image Generator, SMOTE, and ADASYN provides insight into which technique is most suitable for improving model performance on limited medical data. By comparing these techniques' accuracy, recall, and overall performance results, research can identify the most effective and relevant techniques in addressing the challenges of complex medical datasets. This provides a valuable guide for developing better CNN models in the future and may encourage further research in developing more innovative augmentation methods suitable for the medical domain.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Aksoy, B., & Salman, O. K. M. (2022). Prediction of Covid-19 disease with Resnet-101 deep learning architecture using Computerized Tomography images. Türk Doğa ve Fen Dergisi, 11(2), 36–42. https://doi.org/10.46810/tdfd.1095624

Apostolopoulos, I. D. (2020). Investigating the Synthetic Minority Class Oversampling Technique (Smote) on an Imbalanced Cardiovascular Disease (Cvd) Dataset. International Journal of Engineering Applied Sciences and Technology, 04(09), 431–434. https://doi.org/10.33564/ijeast.2020.v04i09.058

Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. Geomatika, 24(2), 61. https://doi.org/10.24895/jig.2018.24-2.810

Babu, K. S., & Rao, Y. N. (2023). A Study on Imbalanced Data Classification for Various Applications. Revue d’Intelligence Artificielle, 37(2), 517–524. https://doi.org/10.18280/ria.370229

Bloice, M. D., Roth, P. M., & Holzinger, A. (2019). Biomedical image augmentation using Augmentor. Bioinformatics, 35(21), 4522–4524. https://doi.org/10.1093/bioinformatics/btz259

Chan, E., Kelly, M., & Schnabel, J. A. (2021). Comparison of classical machine learning deep learning to characterise fibrosis inflammation using quantitative MRI. Proceedings - International Symposium on Biomedical Imaging, 2021-April, 729–732. https://doi.org/10.1109/ISBI48211.2021.9433962

Chen, Y., Chang, R., & Guo, J. (2021). Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network. IEEE Access, 9, 47491–47502. https://doi.org/10.1109/ACCESS.2021.3068316

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., & Haworth, A. (2021). A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 65(5), 545–563. https://doi.org/10.1111/1754-9485.13261

Chowdhury, D., Das, A., Dey, A., Shreya, S., Dwivedi, A. D., Mukkamala, R. R., & Murmu, L. (2022). ABCanDroid : A Cloud Integrated Android App for.

Dablain, D., Krawczyk, B., & Chawla, N. V. (2022). DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, PP, 1–15. https://doi.org/10.1109/TNNLS.2021.3136503

El-Amir, H., & Hamdy, M. (2020). Deep Learning Pipeline. In Deep Learning Pipeline. https://doi.org/10.1007/978-1-4842-5349-6

Eldin, S. N., Hamdy, J. K., & Adnan, G. T. (2021). Deep Learning Approach for Breast Cancer Diagnosis from Microscopy Biopsy Images. 216–222. https://doi.org/10.1109/MIUCC52538.2021.9447653

Elmannai, H., Hamdi, M., & Algarni, A. (2021). Deep learning models combining for breast cancer histopathology image classification. International Journal of Computational Intelligence Systems, 14(1), 1003–1013. https://doi.org/10.2991/ijcis.d.210301.002

Krishna, S., S, S. S., Krishnamoorthy, S., & Bhavsar, A. (2022). Stain Normalized Breast Histopathology Image Recognition using Convolutional Neural Networks for Cancer Detection. (1).

Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. https://doi.org/10.1016/j.apacoust.2020.107399

Kummer, A., Ruppert, T., Medvegy, T., & Abonyi, J. (2022). Machine learning-based software sensors for machine state monitoring - The role of SMOTE-based data augmentation. Results in Engineering, 16(November). https://doi.org/10.1016/j.rineng.2022.100778

Mahmud, I., & Abdelgawad, A. (2023). A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using Histopathology Images.

Maistry, B., & Ezugwu, A. E. (2021). Breast Cancer Detection and Diagnosis: A comparative study of state-of-the-arts deep learning architectures. 1–20.

Montaha, S., Azam, S., Kalam, A., Rakibul, M., Rafid, H., Ghosh, P., … Boer, F. De. (2021). BreastNet18 : A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images.

Rashmi, R., Prasad, K., & Udupa, C. B. K. (2022). Breast histopathological image analysis using image processing techniques for diagnostic puposes: A methodological review. Journal of Medical Systems, 46(1). https://doi.org/10.1007/s10916-021-01786-9

Saber, A., Sakr, M., Abo-seida, O. M., Keshk, A., Chen, H., & Member, A. (2021). A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. 9. https://doi.org/10.1109/ACCESS.2021.3079204

Shallu, & Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4(4), 247–254. https://doi.org/10.1016/j.icte.2018.10.007

Sharma, S., & Kumar, S. (2022). The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express, 8(1), 101–108. https://doi.org/10.1016/j.icte.2021.11.010

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). A Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering, 63(7), 1455–1462. https://doi.org/10.1109/TBME.2015.2496264

Tiwari, D., Dixit, M., & Gupta, K. (2021). Traitement du Signal Deep Multi-View Breast Cancer Detection : A Multi-View Concatenated Infrared Thermal Images Based Breast Cancer Detection System Using Deep Transfer Learning. 38(6), 1699–1711.

Torres, J., Oliveira, J., & Gomes, E. (2022). The Usage of Data Augmentation Strategies on the Detection of Murmur Waves in a PCG Signal. 4(Biostec), 128–132. https://doi.org/10.5220/0010784500003123

Tripathi, P., Khatri, S. K., & Greunen, D. Van. (2022). A transfer learning approach to implementation of pretrained CNN models for Breast cancer diagnosis. 6(4), 5816–5830.

Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137, 109347. https://doi.org/10.1016/j.patcog.2023.109347

Xu, Y., & Wali, A. (2023). Handwritten Pattern Recognition using Birds-Flocking Inspired Data Augmentation Technique. IEEE Access, 11(May), 71426–71434. https://doi.org/10.1109/ACCESS.2023.3294566

Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2022). Image Data Augmentation for Deep Learning: A Survey. Retrieved from http://arxiv.org/abs/2204.08610

Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V. (2019). Data augmentation using learned transformations for one-shot medical image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 8535–8545. https://doi.org/10.1109/CVPR.2019.00874

Downloads


Crossmark Updates

How to Cite

Isthigosah, M., Sunyoto, A. ., & Hidayat, T. . (2023). Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2381-2392. https://doi.org/10.33395/sinkron.v8i4.12878

Most read articles by the same author(s)