Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks
DOI:
10.33395/sinkron.v8i4.12878Keywords:
Augmentation; Convolutional Neural Network; Image Generator; SMOTE; ADASYNAbstract
In applying Convolutional Neural Network (CNN) to computer vision tasks in the medical domain, it is necessary to have sufficient datasets to train models with high accuracy and good general ability in identifying important patterns in medical data. This overfitting is exacerbated by data imbalances, where some classes may have a smaller sample size than others, leading to biased predictive results. The purpose of this augmentation is to create variation in the training data, which in turn can help reduce overfitting and increase the ability of the model to generalize. Therefore, comparing augmentation techniques becomes essential to assess and understand the relative effectiveness of each method in addressing the challenges of overfitting and data imbalance in the medical domain. In the context of the research described, namely a comparative analysis of augmentation performance on CNN models using the ResNet101 architecture, a comparison of augmentation techniques such as Image Generator, SMOTE, and ADASYN provides insight into which technique is most suitable for improving model performance on limited medical data. By comparing these techniques' accuracy, recall, and overall performance results, research can identify the most effective and relevant techniques in addressing the challenges of complex medical datasets. This provides a valuable guide for developing better CNN models in the future and may encourage further research in developing more innovative augmentation methods suitable for the medical domain.
Downloads
References
Aksoy, B., & Salman, O. K. M. (2022). Prediction of Covid-19 disease with Resnet-101 deep learning architecture using Computerized Tomography images. Türk Doğa ve Fen Dergisi, 11(2), 36–42. https://doi.org/10.46810/tdfd.1095624
Apostolopoulos, I. D. (2020). Investigating the Synthetic Minority Class Oversampling Technique (Smote) on an Imbalanced Cardiovascular Disease (Cvd) Dataset. International Journal of Engineering Applied Sciences and Technology, 04(09), 431–434. https://doi.org/10.33564/ijeast.2020.v04i09.058
Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. Geomatika, 24(2), 61. https://doi.org/10.24895/jig.2018.24-2.810
Babu, K. S., & Rao, Y. N. (2023). A Study on Imbalanced Data Classification for Various Applications. Revue d’Intelligence Artificielle, 37(2), 517–524. https://doi.org/10.18280/ria.370229
Bloice, M. D., Roth, P. M., & Holzinger, A. (2019). Biomedical image augmentation using Augmentor. Bioinformatics, 35(21), 4522–4524. https://doi.org/10.1093/bioinformatics/btz259
Chan, E., Kelly, M., & Schnabel, J. A. (2021). Comparison of classical machine learning deep learning to characterise fibrosis inflammation using quantitative MRI. Proceedings - International Symposium on Biomedical Imaging, 2021-April, 729–732. https://doi.org/10.1109/ISBI48211.2021.9433962
Chen, Y., Chang, R., & Guo, J. (2021). Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network. IEEE Access, 9, 47491–47502. https://doi.org/10.1109/ACCESS.2021.3068316
Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., & Haworth, A. (2021). A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 65(5), 545–563. https://doi.org/10.1111/1754-9485.13261
Chowdhury, D., Das, A., Dey, A., Shreya, S., Dwivedi, A. D., Mukkamala, R. R., & Murmu, L. (2022). ABCanDroid : A Cloud Integrated Android App for.
Dablain, D., Krawczyk, B., & Chawla, N. V. (2022). DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, PP, 1–15. https://doi.org/10.1109/TNNLS.2021.3136503
El-Amir, H., & Hamdy, M. (2020). Deep Learning Pipeline. In Deep Learning Pipeline. https://doi.org/10.1007/978-1-4842-5349-6
Eldin, S. N., Hamdy, J. K., & Adnan, G. T. (2021). Deep Learning Approach for Breast Cancer Diagnosis from Microscopy Biopsy Images. 216–222. https://doi.org/10.1109/MIUCC52538.2021.9447653
Elmannai, H., Hamdi, M., & Algarni, A. (2021). Deep learning models combining for breast cancer histopathology image classification. International Journal of Computational Intelligence Systems, 14(1), 1003–1013. https://doi.org/10.2991/ijcis.d.210301.002
Krishna, S., S, S. S., Krishnamoorthy, S., & Bhavsar, A. (2022). Stain Normalized Breast Histopathology Image Recognition using Convolutional Neural Networks for Cancer Detection. (1).
Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. https://doi.org/10.1016/j.apacoust.2020.107399
Kummer, A., Ruppert, T., Medvegy, T., & Abonyi, J. (2022). Machine learning-based software sensors for machine state monitoring - The role of SMOTE-based data augmentation. Results in Engineering, 16(November). https://doi.org/10.1016/j.rineng.2022.100778
Mahmud, I., & Abdelgawad, A. (2023). A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using Histopathology Images.
Maistry, B., & Ezugwu, A. E. (2021). Breast Cancer Detection and Diagnosis: A comparative study of state-of-the-arts deep learning architectures. 1–20.
Montaha, S., Azam, S., Kalam, A., Rakibul, M., Rafid, H., Ghosh, P., … Boer, F. De. (2021). BreastNet18 : A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images.
Rashmi, R., Prasad, K., & Udupa, C. B. K. (2022). Breast histopathological image analysis using image processing techniques for diagnostic puposes: A methodological review. Journal of Medical Systems, 46(1). https://doi.org/10.1007/s10916-021-01786-9
Saber, A., Sakr, M., Abo-seida, O. M., Keshk, A., Chen, H., & Member, A. (2021). A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. 9. https://doi.org/10.1109/ACCESS.2021.3079204
Shallu, & Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4(4), 247–254. https://doi.org/10.1016/j.icte.2018.10.007
Sharma, S., & Kumar, S. (2022). The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express, 8(1), 101–108. https://doi.org/10.1016/j.icte.2021.11.010
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0
Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). A Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering, 63(7), 1455–1462. https://doi.org/10.1109/TBME.2015.2496264
Tiwari, D., Dixit, M., & Gupta, K. (2021). Traitement du Signal Deep Multi-View Breast Cancer Detection : A Multi-View Concatenated Infrared Thermal Images Based Breast Cancer Detection System Using Deep Transfer Learning. 38(6), 1699–1711.
Torres, J., Oliveira, J., & Gomes, E. (2022). The Usage of Data Augmentation Strategies on the Detection of Murmur Waves in a PCG Signal. 4(Biostec), 128–132. https://doi.org/10.5220/0010784500003123
Tripathi, P., Khatri, S. K., & Greunen, D. Van. (2022). A transfer learning approach to implementation of pretrained CNN models for Breast cancer diagnosis. 6(4), 5816–5830.
Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137, 109347. https://doi.org/10.1016/j.patcog.2023.109347
Xu, Y., & Wali, A. (2023). Handwritten Pattern Recognition using Birds-Flocking Inspired Data Augmentation Technique. IEEE Access, 11(May), 71426–71434. https://doi.org/10.1109/ACCESS.2023.3294566
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2022). Image Data Augmentation for Deep Learning: A Survey. Retrieved from http://arxiv.org/abs/2204.08610
Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V. (2019). Data augmentation using learned transformations for one-shot medical image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 8535–8545. https://doi.org/10.1109/CVPR.2019.00874
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Maie Isthigosah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.