Ontology-Based Food Recommender System for Nutrition in School-Age

Authors

  • Dinda Atikah Wulandari School of Computing, Telkom University, Indonesia
  • Z. K. A. Baizal School of Computing, Telkom University, Indonesia

DOI:

10.33395/sinkron.v8i4.12895

Keywords:

Recommender System, Ontology, Food Recommender System, Child Nutrition

Abstract

Nutrition plays an important role in the body and child development. Therefore, it is very important for parent to understand the nutritional needs of children to grow healthy and smart. If nutritional intake is not met, malnutrition can occur in children it interferes whit their growth and development process. The food recommendation system in this study is based on knowledge modeling. The focus of the research is to develop a recommendation system using ontology with Semantic Web Rule Language (SWRL) and form a knowledge base according to the guidelines proposed by Recommended Nutrient Intakes (RNI). Additionally, an Artificial Intelligence (AI) telegram chatbot named NutritionChildreBot was developed for this purpose. The recommended food menu is following the nutritional needs of children aged 7-9 years. The acquired knowledge base will be managed to provide information to users. The results of this research evaluation are in the form of recommendations for selecting foods that meet children’s nutritional needs based on information obtained from reliable sources.Based on this value, the calculation of precision, memory, and F_Score obtained is 97,9% of the accuracy of the results recommended by the system

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biography

Dinda Atikah Wulandari, School of Computing, Telkom University, Indonesia

School of Computing

References

Rahmi, P. (2019). Peran nutrisi bagi tumbuh dan kembang anak usia dini. Jurnal Pendidikan Anak Bunayya, 5(1), 1-13.

Mckensy-Sambola, D., Rodríguez-García, M. Á., García-Sánchez, F., & Valencia-García, R. (2021). Ontology-based nutritional recommender system. Applied Sciences, 12(1), 143.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: a survey. Decision support systems, 74, 12-32.

Fensel, D. (Ed.). (2005). Spinning the Semantic Web: bringing the World Wide Web to its full potential. MIT press.

Web, S. (2004). World Wide Web Consortium(W3C)., 2001.

Rachman, D. D., &Nurjanah, D. (2019). Sistem Rekomendasi Berbasis Model Ontology Dalam Memberikan Rekomendasi Diet Makanan Untuk Penderita Penyakit Diabetes. eProceedings of Engineering, 6(2).

Fahmi, Y. (2021). Model Pengetahuan Berbasis Ontologi pada Domain Big Data di Perguruan Tinggi.

Artaria, M. D. (2009). Peran Faktor Sosial-Ekonomi dan Gizi pada Tumbuh Kembang Anak. Jurnal Masyarakat Kebudayaan dan Politik, 22(1), 49-58.

Bogin, B. (1997). Secular trends in stature are determined by environmenttal health. American Journal of Physical Anthropology.

Ding, L., Kolari, P., Ding, Z., & Avancha, S. (2007). Using ontologies in the semantic web: A survey. Ontologies: A Handbook of Principles, Concepts and Applications in Information Systems, 79-113.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 284(5), 34-43.

Indonesia, AsDI., Indonesia, I. D. A., & Indonesia, P. A. G. (2014). Penuntun Diet Anak. Jakarta: Fakultas Kedokteran Universitas.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004). SWRL: A semantic web rule language combining OWL and Rule ML. W3C Member submission, 21(79), 1-31.

Finnane, J. M., Jansen, E., Mallan, K. M., & Daniels, L. A. (2017). Mealtime structure and responsive feeding practices are associated with less food fussiness and more food enjoyment in children. Journal of nutrition education and behavior, 49(1), 11-18.

Indonesia, P. R. (2019). Peraturan Menteri Kesehatan Republik Indonesia No. 28 Tahun 2019 Tentang Angka Kecukupan Gizi yang Dianjurkan untuk Masyarakat Indonesia.

Downloads


Crossmark Updates

How to Cite

Wulandari, D. A., & Baizal, Z. K. A. (2023). Ontology-Based Food Recommender System for Nutrition in School-Age. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2425-2433. https://doi.org/10.33395/sinkron.v8i4.12895