Identification of Public Library Visitor Profiles using K-means Algorithm based on The Cluster Validity Index

Authors

  • Salnan Ratih Asriningtias Universitas Brawijaya
  • Eka Ratri Noor Wulandari Universitas Brawijaya
  • Myro Boyke Persijn Universitas Brawijaya
  • Novita Rosyida Universitas Brawijaya
  • Bayu Sutawijaya Universitas Brawijaya

DOI:

10.33395/sinkron.v8i4.12901

Keywords:

Between-Cluster Variance, Cluster Validity Index, Cluster Variance, K-Means Clustering, Visitor Profiles, Within-Cluster Variance

Abstract

The existence of a public library in the Gampingan village has a positive impact, such as increasing the literacy culture of the village community. However, the library collection is not sufficient for the needs of visitors.  Therefore, it is necessary to add library collections to fulfill the requirement.  One of the solutions is mapping the library needs of visitors. The mapping can be done by identifying visitor profiles by grouping visitors based on the criteria of age, gender, type of visitor, and category of book library. One of the methods that can be used in the process of grouping visitors based on criteria is to use the K-Means Clustering method. Determining the number of K cluster centers at K-Means Clustering method that are not appropriate will give bad results, it is necessary to test the number of K cluster centers using the Cluster Validity index by measuring the clusters with cluster variance, within-cluster variance, and between-cluster variance. From the grouping process using K-Means Clustering with Cluster Validity index, we get 3 clusters of visitor profiles with a cluster variance value of less than 0.1. This shows that this method was able to identify the visitor profiles with high grouping accuracy values.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Amanda, & Sitorus, M. V. (2021). Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Konsumsi Produk Kosmetik milik PT Cedefindo. Jurnal Ilmiah MIKA AMIK Al Muslim, 5(2), 63–68.

Anisa, A. R., Ipungkarti, A. A., & Saffanah, K. N. (2021). Pengaruh Kurangnya Literasi serta Kemampuan dalam Berpikir Kritis yang Masih Rendah dalam Pendidikan di Indonesia. National Conference on Education, System, and Technology Information, 1(1).

Bahaudin, M. S., & Wasisto, J. (2018). Peran Perpustakaan Desa Dalam Pemberdayaan Masyarakat (Studi Kualitatif Perpustakaan “Pelita” Desa Muntang). Jurnal Ilmu Perpustakaan, 7(2).

Jusia, P. A., Irfan, F. M., & Kurniabudi. (2019). Clustering Data untuk Rekomendasi Penentuan Jurusan Perguruan Tinggi Menggunakan Metode K-Means. Jurnal IKRA-ITH Informatika, 3(3), 75–84.

Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data Untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Jurnal of Computer Engineering System and Science, 4(1), 2502–7131.

Ningrum, D. R., Saleh, C., & Permana, W. (2015). Pengaruh Kebutuhan Informasi Pemustaka Terhadap Pengembangan Koleksi Buku Tercetak pada Perpustakaan Universitas Brawijaya. Jurnal Administrasi Publik, 3(5), 782–788.

Ratih Asriningtias, S., & Sonalitha, E. (2018). Aplikasi K-Means Clustering Untuk Pengelompokkan Siswa Ke Dalam Kelas Berdasarkan Nilai Akademis, Jenis Kelamin, Perilaku Dan Nama Siswa Di Sma Negeri 1 Srengat. Seminar Nasional Sistem Informasi, 9(1), 1179–1187.

Sonalitha, E., Zubair, A., Molyo, P. D., Asriningtias, S. R., Nurdewanto, B., Prambanan, B. R., & Mujahidin, I. (2020). Combined text mining: Fuzzy clustering for opinion mining on the traditional culture arts work. International Journal of Advanced Computer Science and Applications, 11(8), 294–299. https://doi.org/10.14569/IJACSA.2020.0110838

Sudrajat, W., Cholid, I., & Petrus, J. (2022). Penerapan Algoritma K-Means Clustering untuk Pengelompokkan UMKM Menggunakan Rapidminer. Jurnal JUPITER, 14(1), 27–36.

Tahmidaten, L., & Krismanto, W. (2020). Permasalahan Budaya Membaca di Indonesia (Studi Pustaka Tentang Problematika & Solusinya). Scholaria:Jurnal Pendidikan Dan Kebudayaan, 10(1), 22–23.

Widia, I. D. M., Rosalin, S., & Asrriningtias, S. R. (2021). Cluster Validity Index to Determine the Optimal Number Clusters of Fuzzy Clustering for Classify Customer Buying Behavior. Journal of Development Research, 5(1), 7–12. https://doi.org/10.28926/jdr.v5i1.134

Downloads


Crossmark Updates

How to Cite

Asriningtias, S. R. ., Wulandari, E. R. N. ., Persijn, M. B., Rosyida, N., & Sutawijaya, B. . (2023). Identification of Public Library Visitor Profiles using K-means Algorithm based on The Cluster Validity Index. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2615-2626. https://doi.org/10.33395/sinkron.v8i4.12901