Sales Conversion Optimization Analysis Using the Random Forest Method
DOI:
10.33395/sinkron.v8i4.12943Keywords:
Sales Conversion, Optimization, Machine Learning,Methods, Random ForestAbstract
Sales conversion is a challenging field of work in sales and business. Companies are competing to be winners by improving their services and hoping that their product sales can increase in various ways, including by using optimization theory. However, the lack of data analysis is a problem that is often encountered in optimizing sales conversions. Various machine learning-based methods have also been used to help analyze sales conversion optimization. This research uses the Random Forest method which is one of the more robust machine learning methods compared to other methods, namely Adaptive Booster (AdaBoost) and K-Nearest Neighbor (KNN) in analyzing sales conversion optimization. The results showed that the Random Forest method had the best performance in classifying data, by using the 10 cross validation technique the results were obtained with a Mean Squared Error (MSE) value of 0.928 and a Root Mean Square Error (RMSE) of 0.963, better than the Adaptive Booster method. and K-Nearest Neighbor which has lower performance. Sales conversion optimization processing using Random Forest is proven to have the best performance as evidenced by the small Mean Squared Error and Root Mean Square Error which means it has an accurate level of performance compared to other methods.
Downloads
References
Alghifari, F., & Juardi, D. (2021). Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. Jurnal Ilmiah Informatika, 9(02), 75–81. https://doi.org/10.33884/jif.v9i02.3755
Byna, A., & Basit, M. (2020). Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(3), 407–411. https://doi.org/10.32736/sisfokom.v9i3.1023
Chuzaimah Zulkifli, U. (2018). Pengembangan Modul PreprocessingTeks untuk Kasus Formalisasi dan Pengecekan Ejaan Bahasa Indonesia pada Aplikasi Web Mining Simple Solution (WMSS). Jurnal Matematika Statistika Dan Komputasi, 15(2), 95. https://doi.org/10.20956/jmsk.v15i2.5718
Deligiannis, A., Argyriou, C., & Kourtesis, D. (2020). Predicting the optimal date and time to send personalized marketing messages to repeat buyers. International Journal of Advanced Computer Science and Applications, 11(4), 90–99. https://doi.org/10.14569/IJACSA.2020.0110413
Dewi, N. K., Mulyadi, S. Y., & Syafitri, U. D. (2012). Penerapan Metode Random Forest Dalam Driver Analysis. Forum Statistika Dan Komputasi, 16(1), 35–43. http://journal.ipb.ac.id/index.php/statistika/article/view/5443
Faisal, M. R., & Nugrahadi, D. T. (2020). Studi Ekstraksi Fitur Berbasis Vektor Word2Vec pada Pembentukan Fitur Berdimensi Rendah. 8(1), 62–69.
Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. https://doi.org/10.21107/nero.v6i2.237
Korniichuk, R., & Boryczka, M. (2021). Conversion rate prediction based on text readability analysis of landing pages. Entropy, 23(11). https://doi.org/10.3390/e23111388
Maricar, A. M. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika (JSI), 13(2), 36–45. https://www.jsi.stikom-bali.ac.id/index.php/jsi/article/view/193
Mu’Alim, F., & Hiday, R. (2022). Implementasi Metode Random Forest Untuk Penjurusan Siswa Di Madrasah Aliyah Negeri Sintang. Jupiter, 14(1), 116–125. https://www.neliti.com/publications/441871/implementasi-metode-random-forest-untuk-penjurusan-siswa-di-madrasah-aliyah-nege#cite
Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180. https://doi.org/10.31294/jtk.v4i2
Peng, Z., & Chen, M. (2022). New Media Marketing Strategy Optimization in the Catering Industry Based on Deep Machine Learning Algorithms. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/5780549
Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. https://doi.org/10.14421/jiska.2021.6.3.178-188
Risto Miikkulainen, Myles Brundage, Jonathan Epstein, Tyler Foster, Babak Hodjat, Neil Iscoe, Jingbo Jiang, Diego Legrand, Sam Nazari, Xin Qiu, Michael Scharff, Cory Schoolland, Robert Severn, A. S. (2020). Ascend by Evolv: Artificial Intelligence-Based Massively Multivariate Conversion Rate Optimization. AI Magazine.
Riswandi. (2019). Transaksi On-Line (E-Commerce) : Peluang dan Tantangan Dalam Perspektif Ekonomi Islam. Jurnal Econetica, 13(April), 15–38.
Sanjaya, F. I., & Heksaputra, D. (2020). Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 163–174. https://doi.org/10.35957/jatisi.v7i2.388
Suci Amaliah, Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Supriyadi, R., Gata, W., Maulidah, N., & Fauzi, A. (2020). Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah. E-Bisnis : Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 67–75. https://doi.org/10.51903/e-bisnis.v13i2.247
Sutikno, Adhy, S., & Endah, S. N. (2016). Penerapan E-Commerence untuk Meningkatkan dan Memperluas Pemasaran di UMKM (Studi Kasus di UMKM Pengrajin Tahu Putih dan Telur Asin di Kabupaten Klaten). Jurnal Ekonomi Manajemen Akuntansi, 23(40), 1–15.
Tomescu, D. (2020). Conversion rate optimization in e-commerce: using machine learning to identify website satisfaction in clickstream patterns. Data Science & Society, June.
Zimmermann, R., & Auinger, A. (2023). Developing a conversion rate optimization framework for digital retailers—case study. Journal of Marketing Analytics, 11(2), 233–243. https://doi.org/10.1057/s41270-022-00161-y
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Kristiawan Nugroho, Th. Dwiati Wismarini , Hari Murti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.