Satellite Images Classification using MobileNet V-2 Algorithm
DOI:
10.33395/sinkron.v8i4.12949Keywords:
Satellite Images; RSI-CB256 Dataset; Classification; Object Recognition; MobileNet V-2;Abstract
Satellite imagery is an invaluable source of visual information for environmental monitoring and land mapping with high resolution and wide coverage. In this modern technological era, advances in Deep Learning technology have brought great benefits in utilizing satellite images for various purposes. One of the efficient Deep Learning models for satellite image classification is MobileNet V-2, which is specifically designed for devices with limited resources such as smartphones. This study aims to develop an accurate satellite image classification model using Convolutional Neural Network algorithm and MobileNet V-2 model. The data used is taken from the RSI-CB256 dataset developed through crowdsourcing data. This research resulted in the performance of three deep learning models, namely ResNet50, MobileNet V-2, and VGG-16. ResNet50 is the highest model performed best during the training phase, achieve an accuracy of 98.40%. MobileNet V-2 and VGG-16 followed with 95.64% and 96.62% accuracy, respectively. The evaluation results demonstrate the model's strong ability to accurately classify satellite imagery and strengthen the model's ability to generalize well. With high accuracy and the ability to run on smartphone devices, this model has the potential to provide valuable information for governments and scientists in preserving the earth and better responding to environmental changes.
Downloads
References
Burra, R.L., Karuna, S., Tumma, S., Marlapalli, K, & Tumuluru, P. (2022). MobileNetV2-based Transfer Learning Model with Edge Computing for Automatic Fabric Defect Detection. J Sci Ind Res (India), vol. 82, no. 1, pp. 128–134. https://doi.org/10.56042/jsir.v82i1.69928
Choi, K & Sobelman, G. E. (2022). An efficient CNN accelerator for low-cost edge systems. ACM Trans Embed Comput Syst, vol. 21, no. 4, pp. 1–20. https://doi.org/10.1145/3539224
Firmansyah, S., Gaol, J.L & Susilo, S.B. (2019). Perbandingan klasifikasi SVM dan Decision Tree untuk pemetaan mangrove berbasis objek menggunakan citra satelit Sentinel-2B di Gili Sulat, Lombok Timur. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), vol. 9, no. 3, pp. 746–757. https://doi.org/10.29244/jpsl.9.3.746-757
Grandini, M., Bagli, E & Visani, G. (2020). Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756. https://doi.org/10.48550/arXiv.2008.05756
Hadyanti, A. M. & Rudiawan, B. (2022). PENTINGNYA SATELIT UNTUK MENDUKUNG STRATEGI PERTAHANAN LAUT INDONESIA KHUSUSNYA DI WILAYAH CHOKEPOINT. Jurnal Strategi Pertahanan Laut, vol. 7, no. 3, pp. 195–202. https://doi.org/10.33172/spl.v7i3.859
Hallman, J. (2019). A comparative study on Linear Regression and Neural Networks for estimating order quantities of powder blends. Degree Project Computer Science and Engineering, pp. 41–42. https://api.semanticscholar.org/CorpusID:215761264
Magdalena, R., Saidah, S., Pratiwi, N.K.C & Putra, A.T. (2021). Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN). JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 7, no. 3, pp. 335–339. http://dx.doi.org/10.26418/jp.v7i3.48195
Miranda, E & Aryuni, M (2021). Klasifikasi Tutupan Lahan Menggunakan Convolutional Neural Network pada Citra Satelit Sentinel-2. SISTEMASI, vol. 10, no. 2, pp. 323–335. https://doi.org/10.32520/stmsi.v10i2.1226
Muthukumar, V. et al. (2021). Classification vs regression in overparameterized regimes: Does the loss function matter?. The Journal of Machine Learning Research, vol. 22, no. 1, pp. 10104–10172. https://doi.org/10.48550/arXiv.2005.08054
Prioko, K.L. (2020). Convolutional Neural Network Untuk Klasifikasi Citra Asap Pada Gambar Satelit. Institut Teknologi Sepuluh Nopember. http://repository.its.ac.id/id/eprint/78957
Simarmata, N., Elyza, F., & Vatiady, R. (2019). Kajian Citra Satelit Spot-7 Untuk Estimasi Standing Carbon Stock Hutan Mangrove Dalam Upaya Mitigasi Perubahan Iklim (Climate Changes) di Lampung Selatan. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, vol. 16, no. 1, pp. 1–8. http://dx.doi.org/10.30536/j.pjpdcd.2019.v16.a3050
Song, X., Sun, Y., Mustafa, M.A., & Cordeiro, L.C. (2023). QNNRepair: Quantized Neural Network Repair. arXiv preprint arXiv:2306.13793. https://arxiv.org/abs/2306.13793
Tazin, T., Sarker, S., Gupta, P & Ayaz, F.I. (2021). A robust and novel approach for brain tumor classification using convolutional neural network,” Comput Intell Neurosci. https://doi.org/10.1155/2021/2392395
Tehsin, S., Kausar, S., Jameel, A., Humayun, M & Almofarreh, D.K. (2023). Satellite Image Categorization Using Scalable Deep Learning. Applied Sciences (Switzerland), vol. 13, no. 8, doi: 10.3390/app13085108.
Wijaya, B. A., Nugraha, A., Juandry, J., Okinawa, J. and Kinoto, J. (2020) “Film Recommendation System with Social-Union Algorithm: Film Recommendation System with Social-Union Algorithm”, Jurnal Mantik, 4(2), pp. 1278-1284. doi: 10.35335/mantik.Vol4.2020.932.pp1278-1284.
Wijaya, B. A., Manalu, A. J. . ., Tarigan, B. A. . . and Silitonga, L. S. . . (2021) “Steganography Text Message Using LSB and DCT Methods”, Jurnal Mantik, 5(3), pp. 1825-1832. Available at: https://iocscience.org/ejournal/index.php/mantik/article/view/1767 (Accessed: 17July2022)
Xiang, Q., Wang, X., Li, R., Zhang, G., Lai, J & Q. Hu. (2019). Fruit image classification based on Mobilenetv2 with transfer learning technique. Proceedings of the 3rd international conference on computer science and application engineering, pp. 1–7.
Yanan, G., Xiaoqun, C., Bainian, L &
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Bayu Angga Wijaya, Perisman Jaya Gea, Areta Delano Gea Areta , Alvianus Sembiring, Christian Mitro Septiano Hutagalung
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.