Ambon Banana Maturity Classification Based On Convolutional Neural Network (CNN)
DOI:
10.33395/sinkron.v8i4.12961Keywords:
Banana, Classification, Convolutional Neural Network, Maturity, Image enhancementAbstract
The banana (Musa paradical), is an excellent fruit produced nationally and high in vitamins. In Indonesia, banana production is at a higher level than other fruit products. However, one of them is the issue with bananas' post-harvest, which arises when they are produced in huge quantities on a large scale or by an industry that sorts bananas. So far, the determination of the maturity level of bananas is done by relying on visual analysis limited to the color of the skin by the human eye. However, this identification approach has several drawbacks. First, this method requires significant effort in the banana sorting process. In addition, the perception of the fruit's maturity level can vary, because humans can experience fatigue and lack of consistency in judgment. In addition, human judgment is also influenced by subjective factors that can affect the final result. Considering this problem, developed a system to classify the ripeness level of Ambon bananas. This system utilizes image enhancement features to increase contrast, which is implemented using a Convolutional Neural Network (CNN). The classification process is carried out through image processing using MATLAB R2022a software, which forms the basis of a classification system with 4 classes which include 486 images of unripe Ambon bananas, 235 images of half-ripe Ambon bananas, 309 images of perfectly ripe Ambon bananas, 184 images of rotten Ambon bananas. The dataset analyzed in this study totaled 1214 data divided into 1093 training data and 121 test data. The CNN method is used in this data classification, and the results show an accuracy rate of 95.87%.
Downloads
References
Adenugraha, S. P., Arinal, V., & Mulyana, D. I. (2022). Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV. Jurnal Media Informatika Budidarma, 6(1), 9. https://doi.org/10.30865/mib.v6i1.3287
Al Rivan, M. E., Arman, M., & Kennedy, W. (2021). Penentuan Kualitas Buah Pepaya California Menggunakan Metode K-Nn. Jusikom : Jurnal Sistem Komputer Musirawas, 6(1), 1–8. https://doi.org/10.32767/jusikom.v6i1.1175
Aruraj, A., Alex, A., & George, S. T. (2019). Welcome to “2019 International Conference on Signal Processing and Communication (ICSC).” 2019 International Conference on Signal Processing and Communication, ICSC 2019, c, v. https://doi.org/10.1109/ICSC45622.2019.8938305
Chakraborty, S., Raman, A., Sen, S., Mali, K., Chatterjee, S., & Hachimi, H. (2019). Contrast Optimization using Elitist Metaheuristic Optimization and Gradient Approximation for Biomedical Image Enhancement. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019, 712–717. https://doi.org/10.1109/AICAI.2019.8701367
Chu, X., Miao, P., Zhang, K., Wei, H., Fu, H., Liu, H., Jiang, H., & Ma, Z. (2022). Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging. Agriculture (Switzerland), 12(4), 1–18. https://doi.org/10.3390/agriculture12040530
Evans, E. A., Ballen, F. H., & Siddiq, M. (2020). Banana Production, Global Trade, Consumption Trends, Postharvest Handling, and Processing. Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition, 1–18. https://doi.org/10.1002/9781119528265.ch1
Fu, L., Duan, J., Zou, X., Lin, J., Zhao, L., Li, J., & Yang, Z. (2020). Fast and accurate detection of banana fruits in complex background orchards. IEEE Access, 8, 196835–196846. https://doi.org/10.1109/ACCESS.2020.3029215
Galani, V. (2019). Musa paradisiaca Linn.-A Comprehensive Review. Scholars International Journal of Traditional and Complementary Medicine Abbreviated Key Title: Sch Int J Tradit Complement Med, 8634, 45–56. https://doi.org/10.21276/sijtcm.2019.2.4.1
Gupta, J., Pathak, S., & Kumar, G. (2022). Deep Learning (CNN) and Transfer Learning: A Review. Journal of Physics: Conference Series, 2273(1), 0–10. https://doi.org/10.1088/1742-6596/2273/1/012029
Kuang, X., Sui, X., Liu, Y., Chen, Q., & Gu, G. (2019). Single infrared image enhancement using a deep convolutional neural network. Neurocomputing, 332, 119–128. https://doi.org/10.1016/j.neucom.2018.11.081
Le, T. T., Lin, C. Y., & Piedad, E. J. (2019). Deep learning for noninvasive classification of clustered horticultural crops – A case for banana fruit tiers. Postharvest Biology and Technology, 156(May), 110922. https://doi.org/10.1016/j.postharvbio.2019.05.023
Maimunah, Handayanto, R. T., & Herlawati. (2019). Nondestructive Banana Ripeness Classification using Neural Network. Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019. https://doi.org/10.1109/ICIC47613.2019.8985980
Muhammad, A. A., Arkadia, A., NaufalRifqi, S., Trianto, & Prasvita, D. S. (2019). Klasifikasi Tingkat Kematangan Buah Pisang Berdasarkan Fitur Warna dengan Metode SVM. Jurnal Ilmu Komputer Dan Desain Komunikasi Visual, 4(1), 9–16.
Mukhiddinov, M., Muminov, A., & Cho, J. (2022). Improved Classification Approach for Fruits and Vegetables Freshness Based on Deep Learning. Sensors, 22(21). https://doi.org/10.3390/s22218192
Peng, Z., Huang, W., Gu, S., Xie, L., Wang, Y., Jiao, J., & Ye, Q. (2021). Conformer: Local Features Coupling Global Representations for Visual Recognition. Proceedings of the IEEE International Conference on Computer Vision, 357–366. https://doi.org/10.1109/ICCV48922.2021.00042
Picon, A., Seitz, M., Alvarez-Gila, A., Mohnke, P., Ortiz-Barredo, A., & Echazarra, J. (2019). Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions. Computers and Electronics in Agriculture, 167(May), 105093. https://doi.org/10.1016/j.compag.2019.105093
Risdin, F., Mondal, P. K., & Hassan, K. M. (2020). Convolutional Neural Networks ( CNN ) for Detecting Fruit Information Using Machine Learning Techniques. IOSR Journal of Computer Engineering, 22(2), 1–13. https://doi.org/10.9790/0661-2202010113
Sabilla, I. A., Wahyuni, C. S., Fatichah, C., & Herumurti, D. (2019). Determining banana types and ripeness from image using machine learning methods. Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, 407–412. https://doi.org/10.1109/ICAIIT.2019.8834490
Saragih, R. E., & Emanuel, A. W. R. (2021). Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network. 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, 85–89. https://doi.org/10.1109/EIConCIT50028.2021.9431928
Sulistyowarni, I., Sundari, S., & Halim, S. (2020). the Potential of Banana Trading Commodity To Fulfill Market Demand and Support Food Security in Defense Economic Perspective (Study in Bogor District). Jurnal Pertahanan & Bela Negara, 10(3), 307. https://doi.org/10.33172/jpbh.v10i3.1114
Tamatjita, E. N., & Sihite, R. D. (2022). Banana Ripeness Classification using HSV Colour Space and Nearest Centroid Classifier. Information Engineering Express, 8(1), 1. https://doi.org/10.52731/iee.v8.i1.687
Thoriq, A. I., Zuhri, M. H., Purwanto, P., Pujiono, P., & Santoso, H. A. (2022). Classification of Banana Maturity Levels Based on Skin Image with HSI Color Space Transformation Features Using the K-NN Method. Journal of Development Research, 6(1), 11–15. https://doi.org/10.28926/jdr.v6i1.200
Tripathi, M. (2021). Analysis of Convolutional Neural Network based Image Classification Techniques. Journal of Innovative Image Processing, 3(2), 100–117. https://doi.org/10.36548/jiip.2021.2.003
Wu, A., Zhu, J., & Ren, T. (2020). Detection of apple defect using laser-induced light backscattering imaging and convolutional neural network. Computers and Electrical Engineering, 81, 106454. https://doi.org/10.1016/j.compeleceng.2019.106454
Yuan, F., Zhan, L., Pan, P., & Cheng, E. (2021). Low bit-rate compression of underwater image based on human visual system. Signal Processing: Image Communication, 91(May 2020), 116082. https://doi.org/10.1016/j.image.2020.116082
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Yuha Aulia Nisa, Christy Atika Sari, Eko Hari Rachmawanto, Noorayisahbe Mohd Yaacob

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.