Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization

Authors

  • Hafis Nurdin Universitas Nusa Mandiri, Indonesia
  • Sartini Universitas Nusa Mandiri, Indonesia
  • Sumarna Universitas Nusa Mandiri, Indonesia
  • Yana Iqbal Maulana Universitas Bina Sarana Informatika, Indonesia
  • Verry Riyanto Universitas Bina Sarana Informatika, Indonesia

DOI:

10.33395/sinkron.v8i4.12973

Keywords:

Student Graduation; Neural Networks; Particle Swarm Optimization; Prediction;

Abstract

In private universities in Indonesia, student graduation is something that is worth paying attention to, because it will be an aspect of the success of the university. Universities certainly have data on students who graduated, where student graduation data is very important to be taken into consideration by private universities, however with a lot of data it will make it difficult for private universities to find information from this data. Other researchers have previously carried out student graduation data with the same data by examining student graduation data using other methods. So we need a data mining algorithm that has never been tested on student graduation data. The method used is the neural network method with an optimization method, namely the particle swarm optimization method, to test the data, which will later produce information that is very useful for universities. After testing the student graduation data and getting accuracy results using the neural network method of 84.55% and after being optimized using the particle swarm optimization method, the accuracy results were optimal with a value of 86.94%. These results can be used by private universities to predict that students will graduate on time before they take their final semester so that the student graduation rate will be high.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ariyati, I., Rosyida, S., Ramanda, K., Riyanto, V., Faizah, S., & Ridwansyah. (2020). Optimization of the Decision Tree Algorithm Used Particle Swarm Optimization in the Selection of Digital Payments. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012090

Ariyati, Indah, Ridwansyah, & Suhardjono. (2018). Implementasi Particle Swarm Optimization untuk Optimalisasi Data Mining Dalam Evaluasi Kinerja Asisten Dosen. JIKO (Jurnal Informatika Dan Komputer) STMIK AKAKOM, 3(2), 70–75.

Hendra, Azis, M. A., & Suhardjono. (2020). ANALISIS PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN DECISSION TREE BERBASIS PARTICLE SWARM OPTIMIZATION. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/https://doi.org/10.32736/sisfokom.v9i1.756

Iqbal, M., Herliawan, I., Ridwansyah, & Gata, W. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695.IMPLEMENTATION

Mustafa, M. S., Ramadhan, M. R., & Thenata, A. P. (2018). Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Creative Information Technology Journal, 4(2), 151. https://doi.org/10.24076/citec.2017v4i2.106

Nasyuha, A. H., Jama, J., Abdullah, R., Syahra, Y., Azhar, Z., Hutagalung, J., & Hasugian, B. S. (2021). Frequent pattern growth algorithm for maximizing display items. Telkomnika (Telecommunication Computing Electronics and Control), 19(2), 390–396. https://doi.org/10.12928/TELKOMNIKA.v19i2.16192

Pratama, A., Wihandika, R. C., & Ratnawati, D. E. (2018). Implementasi Algoritme Support Vector Machine (SVM) untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(March), 1704–1708.

Ridwansyah, Ariyati, I., & Faizah, S. (2018). Particle Swarm Optimization Berbasis Co-Evolusioner. Jurnal SAINTEKOM, 9(2), 166–177. Retrieved from http://stmikplk.ac.id/jurnal/index.php/saintekom/article/view/96/62

Ridwansyah, & Purwaningsih, E. (2018). Particle Swarm Optimization Untuk Meningkatkan Akurasi Prediksi Pemasaran Bank. Jurnal PILAR Nusa Mandiri, 14(1), 83–88.

Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180

Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424

Rohmawan, E. P. (2018). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network. Jurnal Ilmiah MATRIK Vol.20 No.1, April 2018:21-30, 20(1), 21–30.

Salmu, S., & Solichin, A. (2017). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta. Seminar Nasional Multidisiplin Ilmu (SENMI) 2017, (April), 701–709.

Satapathy, S. C., Chittineni, S., Krishna, S. M., Murthy, J. V. R., & Reddy, d P. V. G. D. P. (2012). Kalman particle swarm optimized polynomials for data classification. Appl. Math. Model, 36(1), 115–126.

Suhardjono, Wijaya, G., & Hamid, A. (2019). PREDIKSI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN SVM BERBASIS PSO. Bianglala Informatika, 7(2), 97–101.

Syarli, S., & Muin, A. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi). Jurnal Ilmiah Ilmu Komputer, 2(1), 22–26.

Widaningsih, S. (2019). Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78

Widiastuti, N. A., Santoso, S., & Supriyanto, C. (2014). ALGORITMA KLASIFIKASI DATA MINING NA¨IVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION UNTUK DETEKSI PENYAKIT JANTUNG PARTICLE SWARM OPTIMIZATION UNTUK DETEKSI PENYAKIT JANTUNG. Pseudocode, 1(1).

Yalidhan, M. D. (2018). Implementasi Algoritma Backpropagation Untuk Memprediksi Kelulusan Mahasiswa. Klik - Kumpulan Jurnal Ilmu Komputer, 5(2), 169. https://doi.org/10.20527/klik.v5i2.152

Downloads


Crossmark Updates

How to Cite

Nurdin, H., Sartini, S., Sumarna, S., Maulana, Y. I. ., & Riyanto, V. . (2023). Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2353-2362. https://doi.org/10.33395/sinkron.v8i4.12973