Linear Regression Analysis To Measure The Correlation Between Poverty Rate And Stunting Rate

Authors

  • Suhaerudin School of Business and Information Technology, STMIK LIKMI
  • Ade Sumardi School of Business and Information Technology, STMIK LIKMI Bandung – Indonesia
  • Christina juliane School of Business and Information Technology, STMIK LIKMI Bandung – Indonesia

DOI:

10.33395/sinkron.v8i4.13007

Keywords:

Pearson Correlation, Linear Regression, Data Mining, Stunting, Poor

Abstract

Children's stunting or growth disorders are becoming major global health issues, particularly in impoverished nations. It is characterized by short height for children and affects future economic potential, health, and cognitive development over the long run. Stunting has a detrimental effect on cognitive growth, schooling, and future economic production in addition to being a sign of dietary deficiencies. This study aims to analyze the relationship between poverty levels and stunting rates. Using secondary data from health surveys and population censuses, this study analyzed the rate of stunting in children aged 0-5 years and correlated it with poverty indicators at the household and community levels. Correlation analysis methods were used to assess the relationship between these variables, while controlling for confounding variables such as parental education, access to health services, and nutrition. The multiple linear regression test results prove that the incidence of stunting is influenced by the poor population variable by 34.1%, so there are other factors that influence it by 64.9%. The results of the analysis show that there is a significant positive correlation between the poverty rate and the prevalence of stunting. This finding underscores the importance of cooperation between the health and economic sectors in efforts to reduce stunting and poverty.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Aguayo, V. M., Nair, R., Badgaiyan, N., & Krishna, V. (2016). Determinants of stunting and poor linear growth in children under 2 years of age in India: An in-depth analysis of Maharashtra’s comprehensive nutrition survey. Maternal and Child Nutrition, 12, 121–140. https://doi.org/10.1111/mcn.12259

Agustin, L., & Rahmawati, D. (2021). Hubungan Pendapatan Keluarga dengan Kejadian Stunting. Indonesian Journal of Midwifery (IJM), 4(1), 30. https://doi.org/10.35473/ijm.v4i1.715

Andarini, R., Imanni, H., Sulistianingsih, E., & Perdana, H. (2023). Analisis Cluster Menggunakan Algoritma K-Means Berdasarkan Faktor Penyebab Stunting Pada Provinsi Kalimantan Barat. Bimaster, 12(3), 301–308.

Apriyani, P., Dikananda, A. R., & Ali, I. (2023). Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi. Hello World Jurnal Ilmu Komputer, 2(1), 20–33. https://doi.org/10.56211/helloworld.v2i1.230

Ariati, L. I. P. (2019). Faktor-Faktor Resiko Penyebab Terjadinya Stunting Pada Balita Usia 23-59 Bulan. OKSITOSIN : Jurnal Ilmiah Kebidanan, 6(1), 28–37. https://doi.org/10.35316/oksitosin.v6i1.341

Chirande, L., Charwe, D., Mbwana, H., Victor, R., Kimboka, S., Issaka, A. I., Baines, S. K., Dibley, M. J., & Agho, K. E. (2015). Determinants of stunting and severe stunting among under-fives in Tanzania: Evidence from the 2010 cross-sectional household survey. BMC Pediatrics, 15(1), 1–13. https://doi.org/10.1186/s12887-015-0482-9

Harlan, J. (2018). Analisis Regresi Linear. Gunadarma.

Kemenkes, R. (2021). Buku Saku Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasional, Provinsi dan Kabupaten/Kota Tahun 2021. Buana Ilmu, 2(1). https://doi.org/10.36805/bi.v2i1.301

Mamlua’atul Mufidah, I., Basuki, H., Ilmu, P., & Masyarakat, K. (2023). Analisis Regresi Linier Berganda Untuk Mengetahui Faktor Yang Mempengaruhi Kejadian Stunting Di Jawa Timur. Indonesian Nursing Journal of Education and Clinic, 3(3), 51–59.

Manaf, S. A. R., Erfiani, Indahwati, Fitrianto, A., & Amelia, R. (2022). Faktor – Faktor yang Memengaruhi Permasalahan Stunting di Jawa Barat Menggunakan Regresi Logistik Biner. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(2), 265–274. https://doi.org/10.36456/jstat.vol15.no2.a5654

Safitri, E., Basriati, S., & Mulyani, S. (2022). Faktor-Faktor yang Mempengaruhi Kejadian Stunting terhadap Balita menggunakan Analisis Regresi Logistik. Zeta - Math Journal, 7(2), 47–52. https://doi.org/10.31102/zeta.2022.7.2.47-52

Widyaningsih, C. A., Didah, D., Sari, P., Wijaya, M., & Rinawan, F. R. (2021). Identifikasi Faktor-Faktor Kejadian Stunting. Jurnal Kebidanan Malahayati, 7(2), 207–214. https://doi.org/10.33024/jkm.v7i2.2854

Downloads


Crossmark Updates

How to Cite

Suhaerudin, S., Ade Sumardi, & Christina juliane. (2023). Linear Regression Analysis To Measure The Correlation Between Poverty Rate And Stunting Rate . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2635-2640. https://doi.org/10.33395/sinkron.v8i4.13007