Performance of CART Time-Based Feature Expansion in Dengue Classification Index Rate
DOI:
10.33395/sinkron.v9i1.13023Keywords:
CART, Machine Learning, Classification, Feature Expansion, DHFAbstract
This study proposes utilizing the machine learning technique CART to classify the spread of dengue hemorrhagic fever (DHF). To expand the features used, the CART classification model was developed based on data collected over the previous 2 to 4 years. The data sources included the Bandung City Health Office for the cases of DHF, the Bandung Meteorology, Climatology and Geophysics Agency for the climate data, the Bandung City Central Statistics Agency for population and educational history data. The top-performing CART classification model over the past 2, 3, and 4 years achieved accuracies of 93%, 93%, and 90%, respectively. The models that exhibited the highest accuracy values and optimal number of feature extensions were chosen as the best ones. CART is among several machine learning techniques that can effectively measure the most impactful features during the classification process. The meteorological parameters were found to be irrelevant in the classification process. This study reveals that the population size, male population proportion, and educational attainment levels are the most impactful features in the classification of DHF spread in Bandung City. The research provides valuable insights into the classification of DHF spread in Bandung City through feature expansion.
Downloads
References
Abdualgalil, B., Abraham, S., & M. Ismael, W. (2022). Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data. Journal of Robotics and Control (JRC), 3(3), 257–268. https://doi.org/10.18196/jrc.v3i3.14387
Arafiyah, R., Hermin, F., Kartika, I. R., Alimuddin, A., & Saraswati, I. (2018). Classification of Dengue Haemorrhagic Fever (DHF) using SVM, naive bayes and random forest. IOP Conference Series: Materials Science and Engineering, 434.
Asadi, F., Trinugroho, J. P., Hidayat, A. A., Rahutomo, R., & Pardamean, B. (2022). Identification of Meteorological Parameters Affecting Dengue Hemorrhagic Fever Incidences. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 130–135. IEEE. https://doi.org/10.1109/ICIMCIS56303.2022.10017803
Astuti, T., Suciati, Mujiati, I., Ayu, D., Ristianah, V., & Lestari, W. A. (2016). PENERAPAN ALGORITME J48 UNTUK PREDIKSI PENYAKIT DEMAM BERDARAH. Telematika.
Center for Epidemiological Data and Surveillance, M. of H. R. of I. (2010). Dengue Hemorrhagic Fever in Indonesia 1968-2009. Pusat Data dan Surveilans Epidemiologi Kementrian Kesehatan RI.
Data and Information Center of the Indonesian Ministry of Health. (2018). Situation of Dengue Fever in Indonesia in 2017.
Fariza, A., Mu’Arifin, & Astuti, D. W. (2021). Spatial-Temporal Visualization of Dengue Haemorrhagic Fever Vulnerability in Kediri District, Indonesia, Using K-means Algorithm. 2021 International Conference on Data and Software Engineering (ICoDSE), 1–6. IEEE. https://doi.org/10.1109/ICoDSE53690.2021.9648487
Ghoneim, S. (2019, April 2). Accuracy, Recall, Precision, F-Score & Specificity, which to optimize on?
Gui, H., Gwee, S., Koh, J., & Pang, J. (2021). Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City. Int. J Environ Res Public Health.
Hamdani, H., Hatta, H. R., Puspitasari, N., Septiarini, A., & Henderi, H. (2022). Dengue classification method using support vector machines and cross-validation techniques. IAES International Journal of Artificial Intelligence (IJ-AI), 11(3), 1119. https://doi.org/10.11591/ijai.v11.i3.pp1119-1129
Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(1), 350. https://doi.org/10.1186/s13104-019-4379-9
Inayah, F. N., Prasetyowati, S. S., & Sibaroni, Y. (2020). Classification of Dengue Hemorrhagic Fever (DHF) Spread in Bandung Regency using Hybrid Naïve Bayes, K-Nearest Neighbor, and Artificial Neural Network Methods. Intl. Journal on ICT, 6, 1–10.
Irmanita, R., Sri Suryani Prasetiyowati, & Yuliant Sibaroni. (2021). Classification of Malaria Complication Using CART (Classification and Regression Tree) and Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 10–16. https://doi.org/10.29207/resti.v5i1.2770
Ministry of Health. (2020). Latest DHF Case Data in Indonesia.
Mufid, M. R., Kusuma Saginta Putri, N. R., Fariza, A., & Mu’arifin. (2018). Fuzzy Logic and Exponential Smoothing for Mapping Implementation of Dengue Haemorrhagic Fever in Surabaya. 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 372–377. IEEE. https://doi.org/10.1109/KCIC.2018.8628533
Shaukat Dar, K., & Ulya Azmeen, S. M. (2015). Dengue Fever Prediction: A Data Mining Problem. Journal of Data Mining in Genomics & Proteomics, 06(03). https://doi.org/10.4172/2153-0602.1000181
Taneja, P., & Gautam, N. (2019). Hybrid Classification Method for Dengue Prediction. International Journal of Engineering and Advanced Technology (IJEAT), 8(6).
Timofeev, R. (2004). Classification and Regression Trees (CART) Theory and Applications. Humboldt University, Berlin.
Wahono, H., & Riana, D. (2020). Prediksi Calon Pendonor Darah Potensial Dengan Algoritma Naïve Bayes, K-Nearest Neighbors dan Decision Tree C4.5. JURIKOM (Jurnal Riset Komputer), 7, 7–14.
Widodo, S., Brawijaya, H., & Samudi, S. (2022). Stratified K-fold cross validation optimization on machine learning for prediction. Sinkron, 7(4), 2407–2414. https://doi.org/10.33395/sinkron.v7i4.11792
World Health Organization. (2023, March 17). Dengue and severe dengue.
Ye, G., Xu, Z., Yang, M., Wang, J., Liang, J., Yin, J., … Liu, Y. (2023). Clinical features and transmission risk analysis of dengue virus infections in Shenzhen, During 2014–2019. Computational and Structural Biotechnology Journal, 21, 3728–3735. https://doi.org/10.1016/j.csbj.2023.07.001
Zeng, Y., Jiang, K., & Chen, J. (2019). Automatic Seismic Salt Interpretation with Deep Convolutional Neural Networks. Proceedings of the 2019 3rd International Conference on Information System and Data Mining, 16–20. New York, NY, USA: ACM. https://doi.org/10.1145/3325917.3325926
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Annisya Hayati Suhendar, Aniq Atiqi Rohmawati, Sri Suryani Prasetyowati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.