Comparison of Activation Functions on Convolutional Neural Networks (CNN) to Identify Mung Bean Quality

Authors

  • Ichwanul Muslim Karo Karo Universitas Negeri Medan https://orcid.org/0000-0002-2824-5654
  • Justaman Arifin Karo Karo Politeknik Teknologi Kimia Industri
  • Manan Ginting Politeknik Teknologi Kimia Industri
  • Yunianto Politeknik Teknologi Kimia Industri
  • Hariyanto Politeknik Teknologi Kimia Industri
  • Novia Nelza Politeknik Teknologi Kimia Industri
  • Maulidna Politeknik Teknologi Kimia Industri

DOI:

10.33395/sinkron.v8i4.13107

Keywords:

Mung beans, CNN algorithm, image preprocessing, Rel U, Adam, Accuracy, Precision, Recall, F1 score

Abstract

Mung bean production levels by farmers in Indonesia are not stable. When there is a surplus, the stock of mung beans in the warehouse will accumulate, the storage factor affects the quality of mung beans. Indicators of quality mung beans can be seen from the color and size through direct observation. However, the aspect of view and assessment and the level of health of each observer is a human error in the classification of mung bean quality so that the results are less than optimal. One alternative way to identify object quality is to use deep learning algorithms. One of the popular deep learning algorithms is convolution neural network (CNN). This study aims to build a model to classify the feasibility of mung beans. The process of building the model also goes through the image preprocessing stage. In the process of building the model, there are ten setup parameters and four setup data used to produce the best model. As a result, the best CNN algorithm model performance is obtained from data setup I, with accuracy, precision, recall and F1 score above 75%. In addition, this study also analyzes Rel U and Adam activation functions on CNN algorithm on model performance in identifying mung bean quality. CNN algorithm with Adam activation function has 92% accuracy, 92.53% precision, 91.9% recall, and 92.19% F1 score. In addition, the performance of CNN algorithm with Adam activation function is superior compared to CNN algorithm with Adam activation function and previous study

GS Cited Analysis

Downloads

Download data is not yet available.

References

Bantacut, T., & Fadhil, R. (2018a). Application of LOGISTICTS 4.0 in Rice Supply Chain Management at Perum BULOG: An Initial Idea. Jurnal Pangan.

Bantacut, T., & Fadhil, R. (2018b). Penerapan LOGISTIK 4.0 dalam Manajemen Rantai Pasok Beras Perum BULOG: Sebuah Gagasan Awal. Jurnal Pangan, 27(2).

Bertoni, F., Citti, G., & Sarti, A. (2022). LGN-CNN: A biologically inspired CNN architecture. Neural Networks, 145. https://doi.org/10.1016/j.neunet.2021.09.024

Carolin, B. T., Suprihatin, Indirasari, & Novelia, S. (2021). Pemberian Sari Kacang Hijau untuk Meningkatkan Kadar Hemoglobin pada Siswi Anemia. Journal for Quality in Women’s Health, 4(1).

Dhamayanti, R., Fatchiyatur Rohma, M., & Zahara, S. (2021). Penggunaan Deep Learning Dengan Metode Convolutional Neural Network Untuk Klasifikasi Kualitas Sayur Kol Berdasarkan Citra Fisik. SUBMIT: Jurnal Ilmiah Teknologi Informasi Dan Sains, 1 (1).

Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 3(2).

Karo, I. M. K., Ramdhani, R., Ramadhelza, A. W., & Aufa, B. Z. (2020). A Hybrid Classification Based on Machine Learning Classifiers to Predict Smart Indonesia Program. Proceeding - 2020 3rd International Conference on Vocational Education and Electrical Engineering: Strengthening the Framework of Society 5.0 through Innovations in Education, Electrical, Engineering and Informatics Engineering, ICVEE 2020. https://doi.org/10.1109/ICVEE50212.2020.9243195

Karo Karo, I. M., Farhan, M., Fudzee, M., Kasim, S., & Ramli, A. A. (2022). Karonese Sentiment Analysis: A New Dataset and Preliminary Result. JOIV: International Journal on Informatics Visualization, 6(2–2), 523–530. www.joiv.org/index.php/joiv

Karo Karo, I. M., Fudzee, M. F. M., Kasim, S., & Ramli, A. A. (2022). Sentiment Analysis in Karonese Tweet using Machine Learning. Indonesian Journal of Electrical Engineering and Informatics, 10(1), 219–231. https://doi.org/10.52549/ijeei.v10i1.3565

Rahman, M. (2023). IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK IDENTIFIKASI KUALITAS TANAMAN SELADA BERDASARKAN CITRA DAUN. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3s1). https://doi.org/10.23960/jitet.v11i3s1.3368

Rathore, M., Prakash, H. G., Singh, D. P., & Khan, K. (2022). Biochemical Evaluation of Moong Bean (Vigna radiata L.) Characterstics for Nutraceutical Applications. Indian Journal Of Agricultural Research, Of. https://doi.org/10.18805/ijare.a-5677

Safitri, A. D. (2021). KLASIFIKASI KUALITAS KACANG HIJAU BERDASARKAN BENTUK DAN WARNA CITRA BIJI DENGAN METODE K-NN. In Universitas Islam Lamongan (Issue Kolisch 1996). Universitas Islam Lamongan.

Sari, I. R. (2020). Implementasi Convolutional Neural Networks (Cnn) Untuk Klasifikasi Citra Benih Kacang Hijau Berkualitas. Engineering, Construction and Architectural Management, 25(1).

Schwab, C. (2013). Keseimbangan Pasar. Form 1099.

Siagian, L., Wilyus, & Nurdiansyah, F. (2020). Penerapan Pola Tanam Tumpangsari Dalam Pengelolaan Hama Tanaman Kacang Hijau (Phaseolus radiatus L.). Jurnal Agroecotania : Publikasi Nasional Ilmu Budidaya Pertanian, 2(2). https://doi.org/10.22437/agroecotania.v2i2.8739

Suhartono. (2012). JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI KUALITAS KACANG HIJAU BERDASARKAN WARNA DAN UKURAN [UNIVERSITAS MUHAMMADIYAH SURAKARTA]. https://eprints.ums.ac.id/20621/14/Makalah_publikasi.pdf

Downloads


Crossmark Updates

How to Cite

Karo Karo, I. M. ., Karo Karo, J. A. ., Ginting, M. ., Yunianto, Y., Hariyanto, H., Nelza, N. ., & Maulidna, M. (2023). Comparison of Activation Functions on Convolutional Neural Networks (CNN) to Identify Mung Bean Quality. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2757-2764. https://doi.org/10.33395/sinkron.v8i4.13107