Hair Disease Classification Using Convolutional Neural Network (CNN) Algorithm with VGG-16 Architecture
DOI:
10.33395/sinkron.v8i4.13110Keywords:
CNN, VGG-16 Architecture, Accuracy, Loss rateAbstract
Hair diseases are common and can be caused by a variety of factors, including genetics, stress, nutritional deficiencies, as well as exposure to sunlight and air pollution. Accurate diagnosis of hair diseases is important for proper treatment, but can be challenging due to overlapping symptoms. The development of the healthcare world has widely utilized machine learning and deep learning approaches to assist in the healthcare field. This research aims to develop hair disease classification using Convolutional neural network (CNN). The CNN-based approach is expected to help health professionals diagnose hair diseases accurately and provide targeted treatment. This research involves an experimental design with three main stages: identifying the research problem, conducting a literature review, and collecting data. The research uses a dataset of hair disease images obtained from Kaggle, which are annotated and organized based on different hair disease types. After the image data is collected, the image dataset will go through the image preprocessing stage. Experiments were conducted using hair disease image data with 15 epochs on a CNN Deep Learning model with VGG-16 architecture, and resulted in an accuracy of 94.5% and a loss rate of 18.47%, with a testing epoch time of 9 hours 48 minutes. The results of this study show that CNN with VGG-16 architecture can successfully classify 10 types of hair diseases
Downloads
References
Aslan, N., Ozmen Koca, G., Kobat, M. A., & Dogan, S. (2022). Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images. Chemometrics and Intelligent Laboratory Systems, 224. https://doi.org/10.1016/j.chemolab.2022.104539
Aytaç Korkmaz, S., & Binol, H. (2018). Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection. Journal of Molecular Structure, 1156. https://doi.org/10.1016/j.molstruc.2017.11.093
Bertoni, F., Citti, G., & Sarti, A. (2022). LGN-CNN: A biologically inspired CNN architecture. Neural Networks, 145. https://doi.org/10.1016/j.neunet.2021.09.024
Bezdan, T., & Bačanin Džakula, N. (2019). Convolutional Neural Network Layers and Architectures. https://doi.org/10.15308/sinteza-2019-445-451
Chang, W. J., Chen, L. B., Chen, M. C., Chiu, Y. C., & Lin, J. Y. (2020). ScalpEye: A Deep Learning-Based Scalp Hair Inspection and Diagnosis System for Scalp Health. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3010847
Darmadi, D., Pradhasumitra, D., & Setiawan, S. E. (2018). EFEKTIFITAS EKSTRAK KULIT DUKU (Lansium domesticum corr) TERHADAP MORTALITAS PEDIKULUS HUMANUS CAPITIS SEBAGAI PENYEBAB PEDIKULOSIS PADA ANAK. JOPS (Journal Of Pharmacy and Science), 1(2). https://doi.org/10.36341/jops.v1i2.487
Heath, C. R., & Usatine, R. P. (2022). Tinea capitis. The Journal of Family Practice, 71(8). https://doi.org/10.12788/jfp.0493
Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S., Steffens, M., Flaquer, A., Herms, S., Becker, T., Kortüm, A. K., Nyholt, D. R., Zhao, Z. Z., Montgomery, G. W., Martin, N. G., Mühleisen, T. W., Alblas, M. A., Moebus, S., Jöckel, K. H., Bröcker-Preuss, M., Erbel, R., … Nöthen, M. M. (2008). Susceptibility variants for male-pattern baldness on chromosome 20p11. Nature Genetics, 40(11). https://doi.org/10.1038/ng.228
Johansen, J. D., Bonefeld, C. M., Schwensen, J. F. B., Thyssen, J. P., & Uter, W. (2022). Novel insights into contact dermatitis. Journal of Allergy and Clinical Immunology, 149(4). https://doi.org/10.1016/j.jaci.2022.02.002
Karo Karo, I. M., Karo Karo, J. A., Ginting, M., Yunianto, Y., Hariyanto, H., Nelza, N., & Maulidna, M. (2023). Comparison of Activation Functions on Convolutional Neural Networks (CNN) to Identify Mung Bean Quality. Sinkron, 8(4), 2757–2764. https://doi.org/10.33395/sinkron.v8i4.13107
Karuna, E., & Petrus, J. (2023). Penentuan Tingkat Kerontokan Rambut Kepala Pria dengan Metode Fuzzy Inference System Sugeno. Jurnal Algoritme, 3(2). https://doi.org/10.35957/algoritme.v3i2.4204
Lewis, F. M. (2022). Lichen Planus. In Ridley’s The Vulva. https://doi.org/10.1002/9781119755173.ch24
Li, X. Q., Chen, Y., Dai, G. C., Zhou, B. B., Yan, X. N., & Tan, R. X. (2021). Abietic acid ameliorates psoriasis-like inflammation and modulates gut microbiota in mice. Journal of Ethnopharmacology, 272. https://doi.org/10.1016/j.jep.2021.113934
Moreno-Vázquez, K., Calderón, L., & Bonifaz, A. (2021). Seborrheic dermatitis. An update. In Dermatologia Revista Mexicana (Vol. 65).
Nandhini, V., Sam Christopher, S., Shivashnee, B., & Kumar, C. R. (2023). Early Detection of Melanoma Using Convolutional Neural Network and Random Forest Algorithm. 2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023. https://doi.org/10.1109/ICACCS57279.2023.10112814
Rebora, A. (2019). Telogen effluvium: A comprehensive review. In Clinical, Cosmetic and Investigational Dermatology (Vol. 12). https://doi.org/10.2147/CCID.S200471
Seetha, J., & Raja, S. S. (2018). Brain tumor classification using Convolutional Neural Networks. Biomedical and Pharmacology Journal, 11(3). https://doi.org/10.13005/bpj/1511
Żeberkiewicz, M., Rudnicka, L., & Malejczyk, J. (2021). Immunology of alopecia areata. In Central European Journal of Immunology (Vol. 45, Issue 3). https://doi.org/10.5114/CEJI.2020.101264
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Ichwanul Muslim Karo Karo, Dedi Kiswanto, Suvriadi Panggabean, Adidtya Perdana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.