OPTIMIZATION NAÏVE BAYES ALGORITHM IN SENTIMENT ANALYSIS OF BUKALAPAK APP REVIEWS
DOI:
10.33395/sinkron.v9i1.13132Keywords:
Analisis Sentimen; Algoritma; Ecommerce; Naïve Bayes; TF-IDFAbstract
Bukalapak application reviews on Google Play Store include useful information if processed correctly. The activity of analyzing application reviews is not enough to see the number of stars, it is necessary to see the entire contents of the review comments to be able to know the intent of the review. Sentiment analysis system is a system used to automatically analyze reviews. Review data is retrieved via the bukalapak application API and then classified using Naive Bayes Multinomial. A total of 1,000 reviews of bukalapak application users were collected to be used as dataset samples. The purpose of this research is to determine the accuracy level of sentiment analysis using the multinomial Naive Bayes algorithm. The stages of this research include, data collection, automatic labeling using python, pre-processing, sentiment classification, and evaluation. In the pre-processing stage there are 6 stages, namely Cleaning, Casefolding, Word Normalizer, Tokenizing, Stopword Removal and Stemming. TF-IDF (Term Frequency - Inverse Document Frequency) method is used for word weighting. The data will be grouped into two categories, namely negative and positive. The test results show an accuracy value of 90%, this result shows that the bukalapak application reviews tend to be negative. The research at this time only looks for accuracy values and provides an overview of the bulapak application to potential new users.
Downloads
References
Anam, C., & Santoso, H. B. (2018). Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa (Vol. 8, Issue 1).
Aridas, C. K., Karlos, S., Kanas, V. G., Fazakis, N., & Kotsiantis, S. B. (2020). Uncertainty Based Under-Sampling for Learning Naive Bayes Classifiers under Imbalanced Data Sets. IEEE Access, 8, 2122–2133. https://doi.org/10.1109/ACCESS.2019.2961784
Damanik, A. R., Sumijan, S., & Nurcahyo, G. W. (2021). Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes. Jurnal Sistim Informasi Dan Teknologi, 88–94. https://doi.org/10.37034/jsisfotek.v3i3.49
Di Estika, I., Darmawan, I., & Pratiwi, O. N. (n.d.). ANALISIS SENTIMEN ULASAN PENGGUNA UNTUK PENINGKATAN LAYANAN MENGGUNAKAN ALGORITMA NAÏVE BAYES (STUDI KASUS : BUKALAPAK) SENTIMENT ANALYSIS OF USER REVIEW FOR SERVICE IMPROVEMENT USING NAIVE BAYES ALGORITHM (CASE STUDY: BUKALAPAK).
Dirjen, S. K., Riset, P., Pengembangan, D., Dikti, R., Sutoyo, E., & Almaarif, A. (2017). Terakreditasi SINTA Peringkat 2 Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier. Masa Berlaku Mulai, 1(3), 95–101.
Eko, P., Utomo, P., Khaira, U., & Suratno, T. (2019). ANALISIS SENTIMEN ONLINE REVIEW PENGGUNA BUKALAPAK MENGGUNAKAN METODE ALGORITMA TF-IDF. In JUSS) Jurnal Sains dan Sistem Informasi (Vol. 2, Issue 2).
Garbian Nugroho, D., Herry Chrisnanto, Y., Wahana Jurusan Informatika, A., & Matematika dan Ilmu Pengetahuan Alam Universitas Jenderal Achmad Yani Jalan Terusan Jenderal Sudirman, F. (n.d.). ANALISIS SENTIMEN PADA JASA OJEK ONLINE MENGGUNAKAN METODE NAÏVE BAYES.
Gunawan, B., Sasty, H., #2, P., Esyudha, E., & #3, P. (2018). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. 4(2), 17–29. www.femaledaily.com
Informatika, B., Nur Rais, A., Hasan, N., & Faizal Amir, R. (n.d.). Komparasi Adaboost dan Bagging Dengan Naïve Bayes Pada Dataset Bank Direct Marketing. 9(1), 2021. https://archive.ics.uci.edu/ml/datasets/bank+ma
Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 406. https://doi.org/10.30865/mib.v5i2.2835
Maulana, R., Hertaryawan, P., Raihan, M., Santoso, I., Tinggi, S., Komputer, I., Karya Informatika, C., Radin, J., Ii, I., Sawit, D., Pengadilan, S., Agama, T., Jakarta, D., Timur, J., Teknologi, U., Jakarta, M., Minangkabau, J., 60 -Manggarai, N., Selatan, J., & Id;, R. A. (n.d.). KOMPARASI ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR PADA ANALISIS SENTIMEN TERHADAP ULASAN PENGGUNA APLIKASI TOKOPEDIA. 17(2). https://doi.org/10.47111/JTI
Nugroho, A., & Religia, Y. (2021). Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 504–510. https://doi.org/10.29207/resti.v5i3.3067
Nur Rozi, F., & Harini Sulistyawati, D. (2019). KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF (Vol. 15, Issue 1).
Saputra, I., AJI PAMBUDI, R. S., DARONO, H. E., AMSURY, F., FAHDIA, M. R., RAMADHAN, B., & ARDIANSYAH, A. (2021). Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning. Faktor Exacta, 13(4), 200. https://doi.org/10.30998/faktorexacta.v13i4.7074
Wati, R., Ernawati, S., & Rachmi, H. (2023). Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH. Jurnal Manajemen Informatika (JAMIKA), 13(1), 84–93. https://doi.org/10.34010/jamika.v13i1.9424
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Fajar Akmali, Andi Dwi Riyanto, Irma Darmayanti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.