Application of Data Mining for Clustering Human Development Index Based on West Java Province 2017-2022

Authors

  • Widiarina Universitas Bina Sarana Informatika,Indonesia, Indonesia
  • Kartika Mariskhana Universitas Bina Sarana Informatika,Indonesia, Indonesia
  • Ita Dewi Sintawati Universitas Bina Sarana Informatika,Indonesia, Indonesia

DOI:

10.33395/sinkron.v9i1.13148

Keywords:

Clustering, Human Development Index, Data Mining, K-Means

Abstract

Human development is used as a parameter to see development from the human side. The Human Development Index (HDI) explains how people get sufficient income, adequate health and education. Geographically, Indonesia is an archipelagic country where each province is spread across various islands separated by sea. Making the disparity in human development between provinces relatively high. The gap that occurs is still a problem that must be resolved immediately, because the gap in the human development index can hamper the government's goal of equalizing human welfare in Indonesia. −One of the problems related to population that West Java Province still has to face is the problem of imbalance in population distribution. Incomplete population distribution causes problems with population density and population pressure in an area. This research uses data sources from the West Java Province Central Statistics Agency (BPS). The data used in this research is data from 2017-2022 which consists of 27 regencies and cities of West Java Province. Therefore, researchers utilized the K-Means algorithm in clustering 27 Regencies and Cities of West Java Province. The data will be processed by clustering into 3 clusters, namely the high population area level cluster, the medium population area level cluster and the low population area level cluster. This research classifies population density using Ms. software. Excel and RapidMiner. The iteration process took place 3 times so that the results obtained were 8 regencies and cities with high population area clusters (C0), 0 regencies and cities with medium population area clusters (C1) and 19 regencies and cities with low population area clusters (C1). C2).

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahsan. (2023). Peringkasan teks multi dokumen berita berbahasa Indonesia menggunakan Fasttext Dan K-Means Clustering. Universitas Islam Negeri Maulana Malik Ibrahim. http://etheses.uin-malang.ac.id/52460/

Anshori, S. (2018). Pemanfaatan Teknologi Informasi Dan Komunikasi Sebagai Media Pembelajaran. Civic-Culture: Jurnal Ilmu Pendidikan PKn Dan Sosial Budaya, 9924, 88–100. file:///C:/Users/HP/Downloads/70-Article Text-536-1-10-20191223.pdf

Azmi, F. (2020). Initial Centroid Optimization of K-Means Algorithm Using Cosine Similarity. Journal of Informatics and Telecommunication Engineering, 3(2), 224–231. https://doi.org/10.31289/jite.v3i2.3211

Bariyah, N. (2022). Pendidikan, Kesehatan dan Penanggulangan Kemiskinan di Kalimantan Barat: Menuju Sustainable Development Goals. Jurnal Ilmu Sosial Dan Humaniora, 11(1), 93–110. https://doi.org/10.23887/jish.v11i1.39343

Daniati, R. R., & Prasetyo, H. D. (2022). Pengaruh Herding Dan Overconfidence Terhadap Keputusan Investasi. Jurnal Revenue : Jurnal Ilmiah Akuntansi, 3(1), 10–14. https://doi.org/10.46306/rev.v3i1.92

Djamro, R. A. (2018). Penerapan Algoritma K-Means Dalam Memilih Tanah Yang Tepat Untuk Tanaman Padi. Prosiding Seminar Ilmiah Sistem Informasi Dan Teknologi Informasi, VII(1), 12–20.

Hamid, H. (2018). Manajemen Pemberdayaan Masyarakat. De La Macca.

Hermawan, & Hasugian, H. (2022). Penerapan Data Mining Untuk Clustering Indeks Pembangunan Manusia Berdasarkan Provinsi Di Indonesia. Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 1(1), 525–532.

Kaylista, N. N. ., Khoirunnisaa, N., Viewianti E.N.F, G., & Yusuf, A. Y. P. (2023). Implementasi Algoritma K-Means Clustering Menggunakan Aplikasi Orange Untuk Mengetahui Pola Indeks Pembangunan Manusia Tahun 2022. Journal of Information and Information Security (JIFORTY ), 4(1), 65–76. http://ejurnal.ubharajaya.ac.id/index.php/jiforty

Luthfi, E., & Wijayanto, A. W. (2021). Analisis perbandingan metode hirearchical , k-means , dan k-medoids clustering dalam pengelompokkan indeks pembangunan manusia Indonesia Comparative analysis of hirearchical , k-means , and k-medoids clustering and methods in grouping Indonesia ’ s human. Inovasi, 17(4), 770–782.

Pamungkas Wijayanto. (2022). Pengaruh Upah Minimum, Indeks Pembangunan Manusia (Ipm), Jumlah Penduduk Dan Pertumbuhan Ekonomi Terhadap Tingkat Pengangguran Terbuka Di Provinsi D.I Yogyakarta Pada Tahun 2016 - 2021. Universitas Islam Indonesia.

Permadi, H. (2022). Solusi untuk Meningkatkan Knowledge Management Readness di Badan Pusat Statistik Kabupaten/Kota. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(1), 97. https://doi.org/10.25126/jtiik.2022914918

Suhanda, Y. (2020). Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik. Jurnal Teknologi Informatika Dan Komputer, 6(2), 12–20. https://doi.org/10.37012/jtik.v6i2.299

Zamroni, A. (2020). Penerapan Sistem Informasi Manajemen Pendidikan dalam Proses Pembelajaran di Sekolah Menengah Pertama. Jurnal Manajemen Pendidikan Islam E-ISSN: On Process, 1, 11–21.

Downloads


Crossmark Updates

How to Cite

Widiarina, W., Mariskhana, K., & Sintawati , I. D. . (2024). Application of Data Mining for Clustering Human Development Index Based on West Java Province 2017-2022. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 44-53. https://doi.org/10.33395/sinkron.v9i1.13148

Most read articles by the same author(s)