OPTIMIZATION ACCURACY VALUE OF AGRICULTURAL LAND FERTILITY CLASSIFICATION USING SOFT VOTING METHOD

Authors

  • Khaliq Pradana Universitas Dian Nuswantoro
  • F Budiman Universitas Dian Nuswantoro

DOI:

10.33395/sinkron.v9i1.13159

Keywords:

Agricultural Agency, classification, decisiom tree, gaussian nave bayes, soft voting.

Abstract

Soil fertility on an agricultural land is very influential with agricultural yields, where plants can grow well and fertile if nutrient intake is met. The purpose of this research is to improve the accuracy in predicting soil fertility by utilizing machine learning by combining two classification algorithms using soft voting methods in the classification of agricultural land fertility. In this research, one of the ensemble learning methods called soft voting is employed. Soft voting is used to enhance accuracy by optimizing the combination of algorithms based on the highest probability provided by each model. The Gaussian Naive Bayes algorithm is used to predict classes in the sample data based on the Gaussian distribution of numerical data, while the decision tree is utilized to predict classes by constructing a decision tree using soil content attributes for the classification of fertile or infertile soil. The use of the Gaussian Naive Bayes algorithm in identifying fertile and infertile soil based on existing attributes achieved an accuracy rate of 87.2%. The decision tree algorithm, based on decision tree modeling, helped identify important attributes for decision-making with an accuracy rate of 88.3%. The soft voting method played a crucial role in improving accuracy by combining both algorithms, resulting in an accuracy rate of 88.8%. Based on the accuracy results obtained, the use of soft voting optimization in predicting soil fertility has the highest accuracy because it combines the Gaussian naïve bayes algorithm and the decision tree algorithm.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., & Janicke, H. (2019). A novel hierarchical intrusion detection system based on decision tree and rules-based models. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), 228–233.

Athar, A., Ali, S., Sheeraz, M. M., Bhattachariee, S., & Kim, H.-C. (2021). Sentimental analysis of movie reviews using soft voting ensemble-based machine learning. 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS), 1–5.

Denny, A., Raj, A., Ashok, A., Ram, C. M., & George, R. (2019). i-hope: Detection and prediction system for polycystic ovary syndrome (pcos) using machine learning techniques. TENCON 2019-2019 IEEE Region 10 Conference (TENCON), 673–678.

Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14, 241–258.

Handayani, P., Nurlelah, E., Raharjo, M., & Ramdani, P. M. (2019). Prediksi Penyakit Liver Dengan Menggunakan Metode Decision Tree dan Neural Network. CESS (Journal of Computer Engineering, System and Science), 4(1), 55–59.

Humbird, K. D., Peterson, J. L., & McClarren, R. G. (2018). Deep neural network initialization with decision trees. IEEE Transactions on Neural Networks and Learning Systems, 30(5), 1286–1295.

Islam, R., & Shahjalal, M. A. (2019). Soft voting-based ensemble approach to predict early stage DRC violations. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 1081–1084.

Jayachitra, S., & Prasanth, A. (2021). Multi-feature analysis for automated brain stroke classification using weighted Gaussian naïve Bayes classifier. Journal of Circuits, Systems and Computers, 30(10), 2150178.

Kamel, H., Abdulah, D., & Al-Tuwaijari, J. M. (2019). Cancer classification using gaussian naive bayes algorithm. 2019 International Engineering Conference (IEC), 165–170.

Karlos, S., Kostopoulos, G., & Kotsiantis, S. (2020). A soft-voting ensemble based co-training scheme using static selection for binary classification problems. Algorithms, 13(1), 26.

Kaunang, F. J. (2018). Penerapan algoritma J48 decision tree untuk analisis tingkat kemiskinan di Indonesia. Cogito Smart Journal, 4(2), 348–357.

Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 40–46.

Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan, M. A., Abbas, S., & Soomro, T. R. (2021). Software defect prediction using ensemble learning: A systematic literature review. IEEE Access, 9, 98754–98771.

Pasha, M. R., Hidayat, R. R., & Abas, M. I. (2023). Implementasi Decision Tree C4. 5 dalam Memilih Perguruan Tinggi Pendamping Program SMK Pusat Keunggulan. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(6), 1129–1139.

Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78.

Pratama, A., Wicaksana, A. A., & Razi, A. (2022). Analisa Kesesuaian Lahan Tanah Untuk Tanaman Padi (Oryza Sativa L.) Dengan Metode Decision Tree Berbasis Web (Studi Kasus Kabupaten Aceh Utara). Jurnal Informatika Kaputama (JIK), 6(1), 1–23.

Rafique, A. A., Jalal, A., & Ahmed, A. (2019). Scene understanding and recognition: statistical segmented model using geometrical features and Gaussian naïve bayes. IEEE Conference on International Conference on Applied and Engineering Mathematics, 57.

Salur, M. U., & Aydın, İ. (2022). A soft voting ensemble learning-based approach for multimodal sentiment analysis. Neural Computing and Applications, 34(21), 18391–18406.

Sanjay, K. S., & Danti, A. (2019). Detection of fake opinions on online products using Decision Tree and Information Gain. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 372–375.

Saqlain, M., Jargalsaikhan, B., & Lee, J. Y. (2019). A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(2), 171–182.

Setiawati, I., Permana, A., & Hermawan, A. (2019). Implementasi Decision Tree Untuk Mendiagnosis Penyakit Liver. Journal of Information System Management (JOISM), 1(1), 13–17.

Taha, A. (2021). Intelligent ensemble learning approach for phishing website detection based on weighted soft voting. Mathematics, 9(21), 2799.

Valentinus, F., Sujono, F., Ariansyah, I., & Capah, D. A. H. (2023). Implementation Of Data Mining With Classification And Forecasting Method Use Model Gaussian Naive Bayes For Building Store (Studi Case: Tb Sinar Jaya). Jurnal Teknik Informatika (Jutif), 4(2), 413–420.

Verma, R., & Chandra, S. (2023). RepuTE: A soft voting ensemble learning framework for reputation-based attack detection in fog-IoT milieu. Engineering Applications of Artificial Intelligence, 118, 105670.

Wibowo, R., Soeleman, M. A., & Affandy, A. (2023). Hybrid Top-K Feature Selection to Improve High-Dimensional Data Classification Using Naïve Bayes Algorithm. Scientific Journal of Informatics, 10(2).

Zhou, K., Yang, Y., Qiao, Y., & Xiang, T. (2021). Domain adaptive ensemble learning. IEEE Transactions on Image Processing, 30, 8008–8018.

Downloads


Crossmark Updates

How to Cite

Pradana, K. ., & Budiman, F. . (2024). OPTIMIZATION ACCURACY VALUE OF AGRICULTURAL LAND FERTILITY CLASSIFICATION USING SOFT VOTING METHOD. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 152-164. https://doi.org/10.33395/sinkron.v9i1.13159