Multilayer Perceptron Performance Analysis in Liver Disease Classification

Authors

  • Muhammad Iqbal Pradipta Universitas Sumatera Utara
  • Zakarias Situmorang Universitas Katolik Santo Thomas, Indonesia
  • Rahmat Widya Sembiring Politeknik Negeri Medan, Indonesia

DOI:

10.33395/sinkron.v9i1.13202

Keywords:

Liver Disease; Multilayer Perceptron; Classification; Confusion Matrix.

Abstract

Liver disease is a liver disease caused by viruses, alcohol, lifestyle and others. Someone often does not realize or is late to know liver disease so that when examined liver disease is severe, it would be better if treatment is done early by knowing the symptoms suffered. Data mining can help diagnose liver disease more easily, especially to help doctors determine whether patients suffer from liver disease or not, with symptoms almost close to liver disease. The process of diagnosing liver disease is carried out by a classification process and the result is that the patient suffers from liver or not. This research uses a data mining classification method using an artificial neural network method, namely Multilayer Perceptron. The Indian Liver Patient Dataset (ILPD) used in this study was obtained from the UCI Machine Learning Repository. The division of the data set over the training data and test data is done by Cross Validation. Performance measurement of the method uses confusion matrix. Based on the research conducted, it was found that the application of Multilayer Perceptron resulted in varying accuracy based on testing with different Fold values with the highest accuracy of 83.70% when the Fold was 7, and the lowest accuracy of 80.57% when the Fold was 3. Then the average accuracy of all Fold tests is 82.13%

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abrar, I. N., Abdullah, A., & Sucipto, S. (2023). Liver Disease Classification Using the Elbow Method to Determine Optimal K in the K-Nearest Neighbor (K-NN) Algorithm. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 12(2), 218–228. https://doi.org/10.32736/sisfokom.v12i2.1643

Amrin, A., & Pahlevi, O. (2021). Data Mining Optimization Based on Particle Swarm Optimization For Diagnosis of Inflammatory Liver Disease. Journal of Informatics and Telecommunication Engineering, 5(1), 152–159. https://doi.org/10.31289/jite.v5i1.5312

Baiq Nurul Azmi, Arief Hermawan, & Donny Avianto. (2023). Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 281–290. https://doi.org/10.35746/jtim.v4i4.298

Erdiansyah, U., Irmansyah Lubis, A., & Erwansyah, K. (2022). Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil. Jurnal Media Informatika Budidarma, 6(1), 208. https://doi.org/10.30865/mib.v6i1.3373

Erdiansyah, U., Lubis, A. I., & Syahputra, G. (2022). Klasifikasi Penyakit Diabetic Retinopathy Menggunakan Multilayer Perceptron. JAISE : Journal of Artificial Intelligence and Software Engineering, 2(1), 1–6.

Gobel, C. Y. (2018). Sistem Pakar Penyakit Liver Menggunakan K- Nearest Neighbors Algoritm Berbasis Website. ILKOM Jurnal Ilmiah, 10(2), 152–159. https://doi.org/10.33096/ilkom.v10i2.296.152-159

Hikmah, I. R., & Yasa, R. N. (2021). Perbandingan Hasil Prediksi Diagnosis pada Indian Liver Patient Dataset (ILPD) dengan Teknik Supervised Learning Menggunakan Software Orange. Jurnal Telematika, 16(2), 69–76.

Jaddoa, A. sami, J. Saba, S., & A.Abd Al-Kareem, E. (2023). Liver Disease Prediction Model Based on Oversampling Dataset with RFE Feature Selection using ANN and AdaBoost algorithms. Buana Information Technology and Computer Sciences (BIT and CS), 4(2), 85–93. https://doi.org/10.36805/bit-cs.v4i2.5565

Lubis, A. I., & Chandra, R. (2023). Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction. Sinkron, 8(1), 275–285. https://doi.org/10.33395/sinkron.v8i1.11967

Lubis, A. I., Erdiansyah, U., & Siregar, R. (2022). Komparasi Akurasi pada Naive Bayes dan Random Forest dalam Klasifikasi Penyakit Liver. Journal of Computing Engineering, System and Science (CESS), 7(1), 81–89.

Patimah, E., Haekal, B. V., Prasvita, D. S., Komp, S., & Kom, M. (2021). Klasifikasi Penyakit Liver dengan Menggunakan Metode Decision Tree. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), April, 655–659. https://conference.upnvj.ac.id/index.php/senamika/article/view/1388

Prasetya Wibawa, A., Lestar, W., Bella Putra Utama, A., Tri Saputra, I., & Nabila Izdihar, Z. (2020). Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik. Indonesian Journal of Data and Science, 1(3), 57–67. https://doi.org/10.33096/ijodas.v1i3.15

Putra, O. V., Musthafa, A., & Kholil, M. (2021). Klasifikasi Intonasi Bahasa Jawa Khas Ponorogo Menggunakan Algoritma Multilayer Perceptron Neural Network. PROSIDING SEMINAR NASIONAL PENELITIAN DAN PENGABDIAN 2021, 459–464.

Rafsanjani, R. G., Hidayat, N., & Dewi, R. K. (2018). Diagnosis Penyakit Hati Menggunakan Metode Naive Bayes Dan Certainty Factor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 4478–4482.

Resha, M., & Syamsu, S. (2021). Prediksi Penyebaran Kasus Tuberkulosis dengan metode Artificial Neural Network dan Multi-Layer Perceptron di kota makassar. JOURNAL OF NATURAL SCIENCE AND TECHNOLOGY ADPERTISI (JNSTA). http://jurnal.adpertisi.or.id/index.php/JNSTA/submissions

Rizki, M. R. F. (2020). Perbandingan Algoritma Klasifikasi Untuk Prediksi Penyakit Liver. Reputasi: Jurnal Rekayasa Perangkat Lunak, 1(2), 82–88. https://doi.org/10.31294/reputasi.v1i2.109

Rosida, A. (2016). Pemeriksaan Laboratorium Penyakit Hati. Berkala Kedokteran, 12(1), 123. https://doi.org/10.20527/jbk.v12i1.364

Sari, N. R., & Mar’atullatifah, Y. (2023). PENERAPAN MULTILAYER PERCEPTRON UNTUK IDENTIFIKASI KANKER PAYUDARA. Jurnal Cakrawala Ilmiah, 2(8), 1185–1186.

Siregar, S. J., Lubis, A. I., & Ginting, E. F. (2021). Penerapan Neural Network Dalam Klasifikasi Citra Permainan Batu Kertas Gunting dengan Probabilistic Neural Network. Building of Informatics, Technology and Science (BITS), 3(3), 420–425. https://doi.org/10.47065/bits.v3i3.1143

Downloads


Crossmark Updates

How to Cite

Pradipta, M. I. ., Situmorang, Z. ., & Sembiring, R. W. . (2024). Multilayer Perceptron Performance Analysis in Liver Disease Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 426-434. https://doi.org/10.33395/sinkron.v9i1.13202