Comparison of Hyperparameter Optimization Techniques in Hybrid CNN-LSTM Model for Heart Disease Classification

Authors

  • Ahmad Alaik Maulani Dian Nuswantoro University
  • Sri Winarno Dian Nuswantoro University
  • Junta Zeniarja Dian Nuswantoro University
  • Rusyda Tsaniya Eka Putri Dian Nuswantoro University
  • Ailsa Nurina Cahyani Dian Nuswantoro University

DOI:

10.33395/sinkron.v9i1.13219

Keywords:

Heart Disease, Machine Learning, Deep Learning, Classification, Hyperparameter Optimization

Abstract

Heart disease, which causes the highest number of deaths worldwide, recorded about 17.9 million cases in 2019, or about 32% of total global deaths, according to the World Health Organization (WHO). The significance of early detection of heart disease drives research to develop effective diagnosis systems utilizing machine learning. The advancement of machine learning in healthcare currently primarily serves as a supporting role in the ability of clinicians or analysts to fulfill their roles, identify healthcare trends, and develop disease prediction models. Meanwhile, deep learning has experienced rapid development and has become the most popular method in recent years, one of which is detecting diseases. The main objective of this research is to optimize the hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model for classifying heart disease by comparing hyperparameter optimization using grid search and random search. Although random search requires less time in hyperparameter tuning, the classification performance results of grid search show higher accuracy. In the test, the hybrid CNN and LSTM model with grid search achieved 91.67% accuracy, 89.66% recall (sensitivity), 93.55% specificity, 92.86% precision, 91.23% f1-score, and 0.9310 AUC value. These results confirm that using a hybrid CNN and LSTM model with a grid search approach is better suited for classifying heart disease.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity. Processes, 11(2). https://doi.org/10.3390/pr11020349

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8

Anggraini Susanti, L., Soleh, A. M., Sartono, B., Pertanian Bogor, I., & Korespondensi, P. (2023). DEEP LEARNING IMAGE CLASSIFICATION RONTGEN DADA PADA KASUS COVID-19 MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 10. https://doi.org/10.25126/jtiik.2023107142

Arooj, S., Rehman, S. ur, Imran, A., Almuhaimeed, A., Alzahrani, A. K., & Alzahrani, A. (2022). A Deep Convolutional Neural Network for the Early Detection of Heart Disease. Biomedicines, 10(11). https://doi.org/10.3390/biomedicines10112796

Cardiovascular diseases (CVDs). (2021, June 11). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Gneiting, T., & Walz, E. M. (2022). Receiver operating characteristic (ROC) movies, universal ROC (UROC) curves, and coefficient of predictive ability (CPA). Machine Learning, 111(8), 2769–2797. https://doi.org/10.1007/s10994-021-06114-3

Gunawan, M. I., Sugiarto, D., & Mardianto, I. (2020). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 6.

Habehh, H., & Gohel, S. (2021). Machine Learning in Healthcare. Current Genomics, 22(4), 291–300. https://doi.org/10.2174/1389202922666210705124359

Janosi, A., Steinbrunn, W., Pfisterer, M., & Detrano, R. (1988, June 30). Heart Disease. UCI Machine Learning Repository.

Javid, I., Khalaf, A., Alsaedi, Z., & Ghazali, R. (2020). Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 11, Issue 3). www.ijacsa.thesai.org

Joseph, V. R., & Vakayil, A. (2022). SPlit: An Optimal Method for Data Splitting. Technometrics, 64(2), 166–176. https://doi.org/10.1080/00401706.2021.1921037

Lee, S. J., Lee, S. H., Choi, H. I., Lee, J. Y., Jeong, Y. W., Kang, D. R., & Sung, K. C. (2022). Deep Learning Improves Prediction of Cardiovascular Disease-Related Mortality and Admission in Patients with Hypertension: Analysis of the Korean National Health Information Database. Journal of Clinical Medicine, 11(22). https://doi.org/10.3390/jcm11226677

Louridi, N., Douzi, S., & El Ouahidi, B. (2021). Machine learning-based identification of patients with a cardiovascular defect. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00524-9

Mienye, I. D., & Sun, Y. (2021). Improved heart disease prediction using particle swarm optimization based stacked sparse autoencoder. Electronics (Switzerland), 10(19). https://doi.org/10.3390/electronics10192347

Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707

Mustajab, R. (2023, September 29). Kematian akibat Penyakit Jantung di Indonesia Terus Meningkat. https://dataindonesia.id/kesehatan/detail/kematian-akibat-penyakit-jantung-di-indonesia-terus-meningkat

Obayya, M., Alsamri, J. M., Al-Hagery, M. A., Mohammed, A., & Hamza, M. A. (2023). Automated Cardiovascular Disease Diagnosis Using Honey Badger Optimization with Modified Deep Learning Model. IEEE Access, 11, 64272–64281. https://doi.org/10.1109/ACCESS.2023.3286661

Shankar, V. V., Kumar, V., Devagade, U., Karanth, V., & Rohitaksha, K. (2020). Heart Disease Prediction Using CNN Algorithm. SN Computer Science, 1(3). https://doi.org/10.1007/s42979-020-0097-6

Shrivastava, P. K., Sharma, M., sharma, P., & Kumar, A. (2023). HCBiLSTM: A hybrid model for predicting heart disease using CNN and BiLSTM algorithms. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100657

Sudha, V. K., & Kumar, D. (2023). Hybrid CNN and LSTM Network For Heart Disease Prediction. SN Computer Science, 4(2). https://doi.org/10.1007/s42979-022-01598-9

Sunarya, U., & Haryanti, T. (2022). Perbandingan Kinerja Algoritma Optimasi pada Metode Random Forest untuk Deteksi Kegagalan Jantung. Jurnal Rekayasa Elektrika, 18(4). https://doi.org/10.17529/jre.v18i4.26981

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1

Wiharto, Suryani, E., Setyawan, S., & Putra, B. P. (2022). The Cost-Based Feature Selection Model for Coronary Heart Disease Diagnosis System Using Deep Neural Network. IEEE Access, 10, 29687–29697. https://doi.org/10.1109/ACCESS.2022.3158752

Wresti, Gunawan, Purwanto, & Catur Supriyanto. (2022). Comparison of Grid Search and Evolutionary Parameter Optimization with Neural Networks on JCI Stock Price Movements during the Covid 19. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(6), 1079–1087. https://doi.org/10.29207/resti.v6i6.4402

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Downloads


Crossmark Updates

How to Cite

Maulani, A. A. ., Winarno, S. ., Zeniarja, J. ., Putri, R. T. E. ., & Cahyani, A. N. . (2024). Comparison of Hyperparameter Optimization Techniques in Hybrid CNN-LSTM Model for Heart Disease Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 455-465. https://doi.org/10.33395/sinkron.v9i1.13219

Most read articles by the same author(s)